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Abstract

We develop a dynamic theory of “Partial Equilibrium Thinking” (PET), which
micro-founds time-varying price extrapolation. Extrapolative beliefs are present at
all times, but only sometimes manifest themselves in explosive ways. Consistent
with the Kindleberger (1978) narrative of bubbles, we distinguish between normal
times shocks and “displacement shocks.” In normal times, PET generates constant
extrapolation and momentum. By contrast, following a displacement shock that
increases uncertainty, PET leads to stronger and time-varying extrapolation, trig-
gering bubbles and endogenous crashes. Our theory sheds light on both normal
times market dynamics and the Kindleberger (1978) narrative of bubbles within a
unified framework.
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Sustained periods of over-optimism that eventually end in a crash are at the heart of

many macro-economic events, such as stock market bubbles, house price bubbles, invest-

ment booms, credit cycles, or financial crises (Bagehot 1873, Galbraith 1954, Kindleberger

1978, Shiller 2000, Jordà et al. 2015, Greenwood et al. 2022). Given the real consequences

of bubbles and crashes, there has been widespread interest in understanding their anatomy

and the beliefs that support them.

In terms of anatomy, Kindleberger (1978)’s historical narrative of bubbles provides

us with some guidance, by identifying three key stages of bubbles and crashes. The first

stage is characterized by what Kindleberger refers to as a displacement, “some outside

event that changes horizons, expectations, anticipated profit opportunities, behavior.”

Examples include technological revolutions, such as the railroads in the 1840s, the radio

and automobiles in the 1920s, and the internet in the 1990s, or financial innovations such

as securitization prior to the 2008 financial crisis. The second stage is characterized by

euphoria and acceleration. As investors respond to such shocks, the good news leads to

a wave of optimism and rising prices. This in turn encourages further buying in a self-

sustaining feedback between prices and beliefs that decouples prices from fundamentals.

More recent empirical evidence has also shown that this stage is also associated with

destabilizing speculation (De Long et al. 1990, Brunnermeier and Nagel 2004), accelerating

and convex price paths (Greenwood et al. 2019), and heavy trading (Hong and Stein 2007,

Barberis 2018, DeFusco et al. 2020). Eventually, in the third stage, agents who rode the

bubble exit, leading to a crash.

Turning to beliefs, early theories of bubbles maintain the assumption of rational ex-

pectations (Tirole 1985, DeMarzo et al. 2007). However, as well as being at odds with

empirical evidence on prices (Giglio et al. 2016), these theories are also unable to speak to

the pervasive empirical and experimental evidence on extrapolative beliefs (Smith et al.

1988, Greenwood and Shleifer 2014). Behavioral theories have instead turned to over-

confidence and short-sale constraints (Harrison and Kreps 1978, Scheinkman and Xiong
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2003), and more recently to modeling extrapolative expectations themselves (De Long

et al. 1990, Hong and Stein 1999, Glaeser and Nathanson 2017, Bordalo et al. 2021, Liao

et al. 2021, Jin and Sui 2022). Following a sequence of positive news, investors extrapo-

late recent price rises, and become more optimistic. This then translates into even higher

prices, and even more optimistic future beliefs. By directly modeling the self-sustaining

feedback between outcomes and beliefs that is characteristic of bubbles, these models

generate many features of the Kindleberger (1978) narrative.1

At the same time, the reduced form nature of extrapolation considered in these theories

leaves several questions open. First, what are the foundations of extrapolative expecta-

tions, and what determines how strongly traders extrapolate price changes in updating

their future beliefs? Second, why is it that “[b]y no means does every upswing in business

excess lead inevitably to mania and panic” (Kindleberger 1978)? In other words, why is

it that the same type of extrapolative beliefs sometimes leads prices and beliefs to become

extreme and decoupled from fundamentals, while in normal times we don’t observe such

extreme responses to shocks?

To answer these questions we first provide a micro-foundation for the degree of price

extrapolation with a theory of “Partial Equilibrium Thinking” (PET) (Bastianello and

Fontanier 2023) in which traders fail to realize the general equilibrium consequences of

their actions when learning information from prices. Second, consistent with the Kindle-

berger narrative, we draw a distinction between normal times shocks and displacement

shocks, and show that while partial equilibrium thinking leads to constant price extrap-

olation in normal times, it leads to stronger and time-varying extrapolation following a

displacement.

Micro-founding the degree of extrapolation in this way and formalizing the difference

between normal times shocks and displacement shocks provides a unifying theory in which

1See Brunnermeier and Oehmke (2013), Xiong (2013) and Barberis (2018) for exhaustive surveys on
bubbles and crashes, and Hirshleifer (2015) for a broader survey on behavioral finance.
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the two-way feedback between prices and beliefs is present at all times, but only mani-

fests itself in explosive ways under very specific circumstances. According to Soros (2015):

“[...] in most situations [the two-way feedback] is so feeble that it can safely be ignored.

We may distinguish between near-equilibrium conditions where certain corrective mecha-

nisms prevent perceptions and reality from drifting too far apart, and far-from equilibrium

conditions where a reflexive double-feedback mechanism is at work and there is no ten-

dency for perceptions and reality to come closer together [...].” We formalize this notion

of “near-equilibrium” and “far-from equilibrium” conditions by modeling the distinction

between normal times shocks which do not generate large changes to the environment,

and Kindleberger-type displacements which instead do.

To illustrate our notion of partial equilibrium thinking, consider some investors who

see the price of a stock rise, but do not know what caused this. They may think that some

other more informed investors in the market received positive news about this stock and

decided to buy, pushing up its price. Given this thought process, they infer positive news

about it, and also buy, leading to a further price increase. At this point, rational agents

perfectly understand that this additional price rise is not due to further good news, but

simply reflects the lagged response of uninformed agents who are thinking and behaving

just like them. As a result, they no longer update their beliefs in response to this second

price rise, and the two-way feedback between prices and beliefs fails to materialize.

However, for uninformed agents to learn the right information from prices, they must

perfectly understand what generates the price changes they observe at each point in time,

which in turn requires them to perfectly understand all other agents’ actions and beliefs.

Theories of rational expectations model this level of understanding by assuming com-

mon knowledge of rationality, which has been widely rejected by experimental evidence

(Crawford et al. 2013). We relax this assumption by building on a large literature in so-

cial learning that has documented how people tend to under-estimate the extent to which

others also learn from aggregate outcomes (Kübler and Weizsäcker 2004, Penczynski 2017,
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Eyster et al. 2018, Enke and Zimmermann 2019), and has formalized this behavior with

models of correlation neglect, näıve herding, cursedness, and k-level thinking (DeMarzo

et al. 2003, Eyster and Rabin 2005, Eyster and Rabin 2010).2,3,4 We introduce this type

of bias in a general equilibrium environment and develop of a dynamic theory of partial

equilibrium thinking (Bastianello and Fontanier 2023), whereby “otherwise rational expec-

tations fail to take into account the strength of similar responses by others” (Kindleberger

1978). Specifically, PET agents neglect that all other uninformed agents are thinking and

behaving just like them, and they instead attribute any price change they observe to new

information alone (DeMarzo et al. 2003). Following the second price rise in our earlier

example, PET agents attribute it to further good news, encouraging further buying and

inducing further price rises in a self-sustaining feedback between prices and beliefs. In

this paper we formalize the intuition behind this example and show how, depending on

the information structure, the strength of this feedback effect may be time-varying.

We begin by introducing partial equilibrium thinking into a standard infinite horizon

model of a financial market where each period a continuum of investors solve a portfolio

choice problem between a risky and a riskless asset. Our agents differ in their ability

to observe fundamental news: a fraction of agents are informed and observe fundamental

shocks, and the remaining fraction of agents are uninformed and instead infer information

from prices. Motivated by empirical and experimental evidence that traders extrapolate

trends as opposed to instantaneous price movements (Andreassen and Kraus 1990, Case

et al. 2012), we assume that traders learn information from past as opposed to current
2See also Bohren (2016), Esponda and Pouzo (2016), Gagnon-Bartsch and Rabin (2016), Fudenberg

et al. (2017), Bohren and Hauser (2021), Frick et al. (2020) on misinference in social learning.
3Bastianello and Fontanier (2023) considers more general types of misinference, and is informative of

how results generalize under different forms of model misspecification.
4We contribute to this literature in two ways. First, we introduce this type of bias in a general

equilibrium environment, where prices don’t only have a purely informational role, but they also have
a market feedback effect role, as they act as a measure of scarcity. Second, by drawing a distinction
between normal times and displacement shocks, we study how the latter introduce time-variation in the
relative strength of the informational and scarcity roles of prices, and show how this allows for reversals
even after periods where outcomes and beliefs have become extreme and decoupled from fundamentals..
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prices, as is standard in models of extrapolative beliefs (De Long et al. 1990, Hong and

Stein 2007 and Barberis et al. 2018).5

Given this information structure, price changes reflect both the contemporaneous re-

sponse of informed agents to news, and the lagged response of uninformed agents who

learn from past prices. However, when uninformed agents think in partial equilibrium,

they neglect the second source of price variation and attribute any price change to new

information alone, leading to a simple type of price extrapolation.

We show that the degree of extrapolation and the bias that partial equilibrium thinking

generates are decreasing in informed traders’ informational edge. This edge is defined

as the aggregate confidence of informed traders relative to the aggregate confidence of

uninformed traders, and is higher when there are more informed traders in the market,

and when the precision of the additional information informed traders hold is higher.

When this informational edge is high, informed traders trade more aggressively, and the

influence on prices of uninformed traders’ beliefs is lower. This leads partial equilibrium

thinkers to neglect a smaller source of price variation, therefore leading to a smaller bias

and a smaller strength of the feedback between prices and beliefs. Conversely, when

informed traders’ edge is low, partial equilibrium thinkers neglect a greater source of

price variation, leading to a larger bias and a stronger feedback effect. By understanding

how this edge varies in response to different types of shocks, we can then understand

how following a displacement shock partial equilibrium thinking generates much more

amplification than in normal times.
5Bastianello and Fontanier (2023) explore the implications of partial equilibrium thinking with learn-

ing from current prices and more general types of model misspecification in a static framework. The
assumption of learning from past prices is standard in models of extrapolative expectations (De Long
et al. 1990, Hong and Stein 2007 and Barberis et al. 2018), and allows us to model the evolution of the
two-way feedback between outcomes and beliefs dynamically, as opposed to restricting us to studying
the steady state properties of this process. We can therefore think of models of extrapolative beliefs as
embedding an additional layer of bounded rationality, which prevents traders from updating their beliefs
and trade at the same time, and instead induces them to perform these two tasks sequentially. Notice
that for consistency we compare equilibrium outcomes under PET to a rational benchmark which embeds
the same assumption of learning from past prices.
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We show that in normal times informed agents’ edge is constant over time. For exam-

ple, normal times shocks may come in the form of earnings announcements: sophisticated

traders are better able to understand the long run implications of such shocks, and un-

informed retail traders can learn about them more slowly by observing how the market

reacts to such news. When this is the case, informed traders are always one step ahead of

uninformed traders, and their edge is high and constant, meaning that partial equilibrium

thinkers neglect a small source of price variation, thus leading to weak departures from

rationality, as when Soros’ notion of “near equilibrium” conditions are satisfied.

This is no longer true following a Kindleberger-type displacement, when the informa-

tional edge becomes time-varying. Specifically, displacements are “something new under

the sun,” and the implications of such shocks for long term outcomes can be learnt only

gradually over time.6 These shocks wipe out much of informed agents’ edge as not even

the most informed of informed agents are able to immediately grasp the full long-term

implications of such events. This leads informed agents to trade less aggressively, and

to a rise in the influence on prices of uninformed traders’ beliefs. Partial equilibrium

thinkers then neglect a greater source of price variation, leading to a stronger bias. This

contributes to fuelling the strength of the feedback between prices and beliefs, allowing

both to accelerate away from fundamentals, as “far-from equilibrium” conditions take

over in determining equilibrium dynamics. As informed traders learn more about the

displacement over time, they regain their edge, leading to a gradual fall in the degree

of extrapolation, and in the strength of the feedback effect. When the feedback effect

runs out of steam, the bubble bursts, and prices and beliefs converge back towards funda-

mentals. The exact shape of the bubble then depends on the speed with which informed

6The distinction that we draw between normal times shocks and displacement shocks is also consistent
with recent evidence in Kogan et al. (2023), who show that retail investors behave differently when trading
cryptos relative to traditional asset classes. This is consistent with our model, where cryptos are subject to
a displacement shock: they are indeed a new technology, and traders may only learn about the likelihood
of adoption only gradually over time.
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traders learn more about the displacement.

Relative to earlier micro-foundations of price extrapolation (Hong and Stein 1999,

Malmendier and Nagel 2011, Fuster et al. 2012, Glaeser and Nathanson 2017, Greenwood

and Hanson 2015, Jin and Peng 2023), this paper makes three key contributions. First,

we draw a distinction between normal times shocks and displacement shocks: consistent

with the Kindleberger (1978) narrative, bubbles may only arise following a displacement

shock, and we provide a formal way to model this. Second, partial equilibrium thinking

provides a micro-foundation for time-varying price extrapolation, therefore highlighting

an additional source of amplification during the formation of bubbles. Third, we are able

to exploit the properties of unstable and non-stationary regions, as displacements make

the transition to such regions only temporary. This allows us to offer an explanation for

why not every large positive shock leads to bubbles and crashes, in a way that is consistent

with both historical narratives and more recent empirical evidence (Kindleberger 1978).7,8

Finally, Section 3 studies how our bias interacts with inter-temporal trading motives,

and show that whether speculators amplify bubbles or arbitrage them away depends on

their beliefs of whether mispricing is temporary or not. While the focus of our paper is

on the role of higher order beliefs in contributing to misinference, this section allows us to

connect to the distinct but complementary literature that has studied the role of higher

7This environment-dependent strength of extrapolation distinguishes our work from other learning
models, as in Branch and Evans (2011) or Adam et al. (2017), as we discuss in more details in Section
2.3. Additionally, our model features heterogenous beliefs and large trading volume, therefore lending
itself to explaining key features of bubbles.

8Our model also differs from models of fundamental extrapolation on the same three dimensions
mentioned in the text (time-variation in the degree of extrapolation, our formal modeling of displacements
and normal times shocks, and how we exploit non-stationary regions). Additionally, unlike models of
price extrapolation, models of fundamental extrapolation do not embed a two-way feedback between
prices and beliefs, and therefore cannot generate as much amplification (see Bastianello and Fontanier
2023 for further discussion on this point). Specifically, fundamental extrapolation on its own cannot yield
non-stationary dynamics, and cannot endogenously generate a convex price path in the run-up of a bubble
without relying on a convex path in fundamentals as well (at which point even the rational benchmark
leads to convex price dynamics). Our notion of displacements does not rely on convex fundamentals,
and instead captures important features of shocks that have historically lead to bubble and crashes
(Kindleberger 1978).
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order beliefs in forecasting (De Long et al. 1990, Abreu and Brunnermeier 2002, Schmidt-

Engelbertz and Vasudevan 2023). Misinference regards agents’ model of the world in

interpreting past outcomes. The second type of bias instead regards agents’ forward-

looking model of the world: how do agents forecast future equilibrium outcomes given

their information set. These two biases need not bite at the same time, but may interact

with each other. The first part of our analysis isolated the role of misinference by having

traders forecast fundamentals, therefore shutting down higher order beliefs in forecasting.

Conversely, in Section 3 we consider the case where traders forecast future prices, and

study how higher order beliefs also affect the behavior of informed traders who are by

design not subject to biases in inference. Consistent with previous findings, we show that if

informed traders think that they live in a rational world and that mispricing is temporary,

they arbitrage the bubble away immediately, and bubbles and crashes do not arise. If

instead they realize that other traders are biased, that future mispricing is predictable and

that they will be able to sell the asset to “a greater fool” at a higher price in the future,

they increase their position in the asset, thus pushing prices up further, and amplifying the

bubble. Internet Appendix D shows that this type of amplification is present even when

informed traders solve the full inter-temporal problem with dynamic trading motives, as

in He and Wang (1995). These predictions are consistent with bubbles being associated

with destabilizing speculation (Keynes 1936), and with more sophisticated traders initially

riding the bubble (Brunnermeier and Nagel 2004).

The paper proceeds as follows. In Section 1 we introduce our notion of partial equilib-

rium thinking and study its implications in normal times. Section 2 models displacements

and studies how they interact with partial equilibrium thinking in generating bubbles and

crashes. Section 3 adds inter-temporal trading motives. Section 4 concludes.
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1 Normal Times

In this section we introduce our notion of partial equilibrium thinking (PET) in normal

times, which we think of as periods where shocks come in the form of regular earning

announcements that do not cause significant changes in the composition of traders in the

market, or in the relative confidence of traders.

1.1 Setup

We consider an infinite period model, where agents solve a portfolio choice problem be-

tween a risk-free and a risky asset.

Assets and fundamentals. The risk-free asset is in elastic supply and we normalize

its price and its risk-free rate to one. The risky asset is in fixed net supply Z and

pays a liquidating dividend when it dies an uncertain terminal date.9 In each period,

with probability β the asset remains alive and produces ut
iid∼ N(0, σ2

u) worth of terminal

dividends, and with probability (1 − β) the asset dies, and all accumulated dividends

are paid out (Blanchard 1985). Introducing an uncertain terminal date is a simple and

effective modeling device that increases tractability by serving two key purposes: it allows

us to study partial equilibrium thinking in isolation from horizon effects from approaching

a fixed terminal date, and it keeps variances bounded even as we allow the terminal date

to be arbitrarily far into the future.10

9The fixed supply ensures that prices are fully revealing (Grossman 1976). Internet Appendix C allows
for the supply of the risky asset to be stochastic, so that prices are only partially revealing (Diamond
and Verrecchia 1981). The key intuitions remain unchanged.

10Supplementary Material available on the authors’ websites considers many alternative processes
for the dynamic evolution of the fundamental value of the asset. For example, we consider the case
where fundamentals evolve as a random walk with a fixed terminal date, or where the growth rate of
fundamentals follows an AR(1). Our results on the interaction of partial equilibrium thinking with
different types of shocks are robust to these variations without an uncertain terminal date, and we choose
this process for fundamentals for tractability.
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From the point of view of period t, the asset is still alive in period t+h with probability

βh. Taking expectations over all possible terminal dates, the present value of the terminal

dividend in period t, conditional on realized future shocks {ut+h}∞
h=1, can be written as:11

Et[DT |{uj}t
j=0, {ut+h}∞

h=1] = D̄ +
t∑

j=0
uj +

∞∑
h=1

βhut+h (1)

where D̄ > 0 is constant and is common knowledge. This expression reflects that from

the point of view of period t, the asset has produced ∑t
j=0 uj worth of terminal dividends

while alive in these first t periods, and with probability βh the asset is still alive in period

t + h, and if so it will produce an amount ut+h. This survival probability β then acts as a

very natural discount rate such that dividends paid further into the future receive a lower

weight today.

Objective function. Our economy is populated by a continuum of measure one of

fundamental traders, who have mean-variance utility, and solve the following portfolio

choice problem in each period:

max
Xi,t

{
Xi,t (Ei,t[DT ] − Pt) − 1

2AX2
i,tVi,t[DT ]

}
(2)

where Xi,t is the dollar amount that agent i invests in the risky asset in period t, A is the

coefficient of absolute risk aversion, and Ei,t[DT ] and Vi,t[DT ] refer to agent i’s posterior

mean and variance beliefs about the fundamental value of the asset conditional on their

information set in period t. The corresponding first order condition yields the following

standard demand function for the risky asset:

Xi,t = Ei,t[DT ] − Pt

AVi,t[DT ] (3)

11The subscript T stands for Terminal dividend, and not for period T .
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which is increasing in agent i’s expected payoff, and decreasing in the risk they associate

with holding the asset.

This objective function allows us to study partial equilibrium thinking in isolation

of inter-temporal trading motives. This has two advantages: first, it increases tractabil-

ity substantially; second, it allows us to study the role of higher order beliefs in inference

(which is the focus of our paper) separately from higher order beliefs in forecasting (which

has been studied in earlier work).12 In Section 3 we consider the more common objective

function with mean-variance utility over next period wealth, with traders who forecast

next period prices as opposed to long-term fundamentals. In Internet Appendix D, we

additionally allow informed traders to solve the full intertemporal dynamic trading prob-

lem as in He and Wang (1995). The key results and intuitions of how partial equilibrium

thinking shapes uninformed traders’ beliefs in response to normal times shocks and dis-

placement shocks are unchanged.

Information structure and beliefs. Turning to the information structure, we assume

that a fraction ϕ of agents are informed, and observe the fundamental shock ut in every

period. The remaining fraction (1 − ϕ) of agents are uninformed and do not observe any

of the fundamental shocks, but can learn information from prices.

Given experimental evidence by Andreassen and Kraus (1990) that traders tend to

extrapolate recent price trends rather than instantaneous price movements, we assume

that traders learn information from past as opposed to current prices, in the spirit of the

positive feedback traders in De Long et al. (1990), Hong and Stein (1999), and Barberis

et al. (2018).13

Importantly, while other details of our setup where chosen for tractability, the asym-
12See Abreu and Brunnermeier (2002) among others for a study of the role of higher order beliefs in

forecasting. Section 3 of our paper expands on this discussion.
13Supplementary Material available on the authors’ websites show that the main intuitions of the

model go through even if we assume that uninformed traders submit market orders that do not condition
on the current price level.
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metric nature of the information structure, and learning from past as opposed to current

prices are key to our model. The first assumption allows informed agents to have an

edge relative to uninformed traders, and we think of it as capturing different types of

market participants (e.g. hedge funds vs retail traders). The second assumption allows

the feedback effect between prices and beliefs embedded in partial equilibrium thinking

to play out dynamically rather than in a single period, and is consistent with evidence on

extrapolative beliefs.

Equilibrium. To solve the model, we proceed in three steps. First, we solve for the

true price function which generates the outcomes that agents observe. Second, we turn

to PET agents’ beliefs of what generates the prices they observe, which allows us to pin

down the mapping that PET agents use to learn information from prices. Finally, we

solve the equilibrium recursively, and study the properties of equilibrium outcomes.

1.2 True Price Function in Normal Times

To solve for the true market clearing price function, we need to specify agents’ posterior

beliefs, compute agents’ asset demand functions, and impose market clearing. Starting

from agents’ beliefs, we know that in period t all informed agents trade on the information

they receive, and update their beliefs accordingly:

EI,t[DT ] = EI,t−1[DT ] + ut (4)

VI,t[DT ] = VI,t

[ ∞∑
h=1

βhut+h

]
=
(

β2

1 − β2

)
σ2

u ≡ VI (5)

Instead, all uninformed agents learn information from past prices. Let ũt−1 be the

fundamental shock which uninformed traders learn from the past price they observe,

Pt−1. More generally, we denote with a ·̃ uninformed traders’ beliefs about a variable. In

this case, since prices are fully revealing, uninformed traders believe they are extracting

12
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from Pt−1 the exact fundamental shock that informed traders observe in t − 1, so ũt−1

is uninformed agents’ belief of the t − 1 fundamental shock, ut−1. For now, we treat

ũt−1 as a generic signal uninformed traders learn from past prices, and we derive this

as an equilibrium object in the next section where we explicitly solve for the inference

problem.14 We can write uninformed traders’ posterior beliefs as:

EU,t[DT ] = EU,t−1[DT ] + ũt−1 (6)

VU,t[DT ] = VU,t

[
ut +

∞∑
h=1

βhut+h

]
=
(

1
1 − β2

)
σ2

u ≡ VU (7)

Importantly, comparing (5) and (7) shows that informed traders have an edge relative

to uninformed traders. While informed traders always face uncertainty over all future

fundamental shocks, uninformed traders additionally face uncertainty over the current

shock, as they only learn information from past prices. Specifically, we define the aggregate

informational edge of informed traders (ζ) as the aggregate confidence of informed traders

relative to the aggregate confidence of uninformed traders:

ζ ≡ ϕ

(1 − ϕ)
τI

τU

(8)

where τi ≡ (Vi)−1 is the confidence of agent i ∈ {I, U}. This edge is increasing in

the fraction of informed traders (ϕ), and in the relative individual level confidence of

informed and uninformed traders (τI/τU). Since in normal times ϕ and τI/τU are constant,

the informational edge is also constant.

Given agents’ posterior beliefs, we can compute their asset demand functions and

impose market clearing to find that prices are a weighted average of agents’ beliefs minus

14Whether ũt−1 = ut−1 or ũt−1 ̸= ut−1 depends on the mapping uninformed traders use to extract
information from prices. In Sections 1.3 and 1.4 we show that if traders have rational expectations, then
ũt−1 = ut−1, but if instead they use a misspecified mapping, as with partial equilibrium thinking, they
extract biased information from prices and ũt−1 ̸= ut−1.
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a risk premium component that compensates them for bearing risk:

Pt = aEI,t[DT ] + bEU,t[DT ] − c (9)

where:

a ≡ ζ

1 + ζ
b ≡ 1

1 + ζ
(10)

and c ≡ AZ
ϕτI+(1−ϕ)τU

. The expressions in (10) then show that the influence on prices of

informed (uninformed) agents’ beliefs is increasing (decreasing) in informed agents’ infor-

mational edge. Taking first differences of the price function in (9) and of agents’ beliefs

in (4) and (8) we find that price changes reflect both informed traders’ instantaneous

response to shocks, and uninformed agents’ lagged response:

∆Pt = aut︸︷︷︸
instantaneous response of I

to new information

+ bũt−1︸ ︷︷ ︸
lagged response of U

from learning from past prices

(11)

To specify what information uninformed agents extract from past prices we need to

understand what uninformed agents think is generating the price changes that they ob-

serve. In what follows we first explore the inference problem under rational expectations,

and we then turn to partial equilibrium thinking.

1.3 Rational Expectations Benchmark

If uninformed traders have rational expectations, they perfectly understand that (11) gen-

erates the price changes they observe, and are therefore able to infer the right information
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from prices:15

ũt−1 = ut−1 (12)

However, for uninformed agents understand the mapping in (11), they must perfectly

understand other agents’ actions and beliefs. In what follows, we relax this assumption.

1.4 Partial Equilibrium Thinking

When agents think in partial equilibrium, they misunderstand what generates the price

changes that they observe because they fail to realize the general equilibrium consequences

of their actions (Bastianello and Fontanier 2023). The way that PET manifests itself in

this setup is that all agents learn information from prices, but they fail to realize that

other agents do too.

Formally, PET agents think that in period t − 1 informed agents update their beliefs

with the new fundamental information received by informed agents, ũt−1:16

ẼI,t−1[DT ] = ẼI,t−2[DT ] + ũt−1 (13)

ṼI,t−1[DT ] =
(

β2

1 − β2

)
σ2

u ≡ ṼI (14)

On the other hand, they think that all other uninformed agents do not learn informa-

tion from prices, and instead trade on the same unconditional prior beliefs they held in

15To keep this rational benchmark as close as possible to our notion of partial equilibrium thinking,
we restrict uninformed rational traders to also learn information from past prices. Internet Appendix B.1
explicitly solves for this rational benchmark.

16The use of t−1 subscripts instead of t is to highlight that uninformed agents learn information from
past prices, so that in period t they must understand what generated the price in period t − 1, as this is
the price they are extracting new information from.
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period t = 0:

ẼU,t−1[DT ] = ẼU,t−2[D] = D̄ (15)

ṼU,t−1[DT ] =
(

1
1 − β2

)
σ2

u ≡ ṼU (16)

where the equivalences in (14) and (16) highlight that in normal times, PET agents

understand that all agents face constant uncertainty over time.17

Given these beliefs, PET agents think that the equilibrium price in period t − 1 is

given by:

Pt−1 = ãẼI,t−1[DT ] + b̃ẼU,t−1[DT ] − c̃ (17)

where:

ã ≡ ζ̃

1 + ζ̃
b̃ ≡ 1

1 + ζ̃
(18)

and where c̃ ≡ AZ
ϕτ̃I+(1−ϕ)τ̃U

and ζ̃ ≡ ϕ
1−ϕ

τ̃I

τ̃U
.18 Taking first differences of the perceived price

function in (17), and of uninformed agents’ perceptions of other agents’ beliefs in (13)

and (15):

∆Pt−1 = ãũt−1︸ ︷︷ ︸
instantaneous response of I

to new information

(19)

which shows that when agents think in partial equilibrium they attribute any price change

they observe to new information alone. In so doing, they neglect the second source of

price variation in (11), which is due to the lagged response of all other uninformed traders.

17Moreover, since ṼI = VI < ṼU = VU , PET agents are not misspecified about other agents’ second
moment beliefs, and they understand that informed agents have an informational edge.

18From (14) and (16), we see that τ̃I = τI and τ̃U = τU , so that in normal times ζ̃ = ζ. However,
displacement shocks draw a wedge between ζ̃ and ζ, so we distinguish between these two quantities from
the outset.
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PET agents then invert the mapping in (19) to extract ũt−1 from prices:19

ũt−1 =
(1

ã

)
∆Pt−1 (21)

Therefore, PET provides a micro-foundation for extrapolative expectations as unin-

formed traders extract a positive signal and become more optimistic whenever they see a

price rise, and extract a negative signal and become more pessimistic whenever they see a

price fall. This is unlike the rational expectations benchmark, where uninformed traders

become more optimistic (pessimistic) following a price rise (fall) only if that price change

is due to new information. If the price change they observe is instead due to the lagged

response of uninformed traders who are learning information from past prices, rational

traders do not update their beliefs.

The bias inherent in partial equilibrium thinking is then increasing in the source of

price variation they neglect, which, in turn, is decreasing in informed traders’ informa-

tional edge. Intuitively, a lower edge (from a smaller fraction of informed traders in the

market, or from a lower confidence of informed relative to uninformed traders) increases

the influence on prices of uninformed agents’ beliefs, leading PET agents to omit a greater

source of price variation.

19We can compare this to the mapping used by rational uninformed traders, who understand that (11)
generates the price function they observe, and therefore use the following mapping to infer information
from prices (as further discussed in Internet Appendix B.1):

ũt−1 =
(

1
a

)
∆Pt−1 −

(
b

a

)
ũt−2 (20)

Since in normal times ã = a, comparing (20) and (21) makes clear that the bias inherent in partial
equilibrium thinking doesn’t come directly from the weight that uninformed traders put on past price
changes (which is 1/a in both the rational and PET case), but rather from neglecting the part of the
price variation that comes from the lagged response of all other uninformed traders. In particular, notice
that it is rational to put less weight on price changes when informed traders’ edge is higher: when this
is the case, information is incorporated more strongly into prices, so that traders have to extrapolate
less strongly to recover that information. Internet Appendix C extends this discussion to the case where
prices are only partially revealing.
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Proposition 1 (Micro-foundation of Price Extrapolation). Partial equilibrium thinking

provides a micro-foundation for extrapolative expectations:

EU,t[DT ] = EU,t−1[DT ] +
(1

ã

)
∆Pt−1 (22)

where 1
ã

= 1 + 1
ζ̃
. Moreover, given a one-off shock to fundamentals, the bias is decreasing

in the true and perceived informational edge of informed traders:

ũt−1 − ut−1 =
(

b

ã

)
ũt−2 (23)

where b
ã

=
(

1
1+ζ

) (
1 + 1

ζ̃

)
.

Proof. All proofs are in Appendix A.

1.5 The Feedback-Loop Theory of Bubbles

Combining the expressions of the true price function in (11) and of the extracted signal

in (21), we find that when traders think in partial equilibrium changes in prices and in

beliefs evolve as an AR(1):

ũt−1 = ut−1 +
(

b

ã

)
ũt−2 (24)

∆Pt = aut +
(

b

ã

)
∆Pt−1 (25)

This is in contrast to the rational benchmark where, combining (11) and (20), we find

that when traders are rational price changes evolve as an MA(1):

ũt−1 = ut−1 (26)

∆Pt = aut + but−1 (27)
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Intuitively, partial equilibrium thinkers mistakenly infer a sequence of shocks from a one-

off shock, and this leads to over-reaction, as is clear from the presence of the second term

in (24) which is instead absent in the rational counterpart in (26). Following a one-off

shock, PET agents fail to realize that the second price rise is due to the buying pressure of

all other uninformed agents, and instead attribute it to further good news, which in turn

fuels even higher prices and more optimistic beliefs, in a self-sustaining feedback loop,

just as we saw in the example in the introduction.

1.5.1 Strength of the Feedback Effect

The AR(1) coefficient in the processes that describe changes in equilibrium prices and

beliefs in (24) and (25) is key to determining the properties of equilibrium outcomes. In

our case, this coefficient also has a special meaning, in that it captures the strength of the

feedback between prices and beliefs, and it is decreasing both in the true informational

edge (ζ), and in uninformed agents’ perception of it (ζ̃):

b

ã
=
(

1
1 + ζ

)(
1 + 1

ζ̃

)
(28)

Intuitively, when uninformed agents’ perception of the informational edge is low, they

neglect a greater source of price variation, leading to a greater bias. Moreover, when the

true informational edge of informed agents is low, the influence on prices of uninformed

traders’ biased beliefs is higher. Both these forces contribute to fuelling the feedback

between outcomes and beliefs.

Proposition 2 (Strength of the Feedback Effect). When agents think in partial equilib-

rium, the strength of the feedback between outcomes and beliefs is decreasing both in the

true informational edge (ζ), and in uninformed agents’ perception of it (ζ̃). Specifically,

environments with a smaller fraction of informed traders (ϕ), and with a lower true and

perceived confidence of informed agents relative to uninformed agents (τI/τU , τ̃I/τ̃U) are
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characterized by a stronger feedback between prices and beliefs.

Empirical Predictions. Equation (24) shows that deviations from rationality are in-

creasing in the strength of the feedback effect, leading to the following empirical prediction

both in the cross-section, and over time.

Proposition 3 (Deviations from Rationality). Deviations from rationality in both prices

and beliefs are decreasing in the true and perceived informational edges (ζ, ζ̃). Specifi-

cally, following a one-off shock to fundamentals, environments with a smaller fraction of

informed agents (ϕ), and with a lower true and perceived confidence of informed agents

relative to uninformed agents (τI/τU , τ̃I/τ̃U) exhibit greater departures from rationality.

Prior work has used a number of proxies for the fraction of informed agents and for

the informativeness of news (see Veldkamp (2023) for a review), and these proxies can

be used to test our predictions empirically. For example, Gompers and Metrick (2001)

and Yan and Zhang (2009) use the share of institutional investors to proxy for informed

traders, while Laarits and Sammon (2022) use the fraction of retail traders as a proxy for

uninformed trading.20 Turning to the precision of new information, Hong et al. (2000)

proxy this with the number of analysts covering a given stock, while Bae et al. (2008)

uses the precision of forecasts reported in survey data.

Consistently with our theory that uninformed traders extrapolate more strongly when

the informational edge is lower, Hong et al. (2000) find that, holding size fixed, momentum

strategies work better among stocks with lower analyst coverage. Similarly, Andrade et al.

(2013) study the 2007 bubble episode in China and find significantly smaller bubbles in

stocks for which there is greater analyst coverage. More recently, Kogan et al. (2023) find

that retail traders engage in very different trading behavior in cryptos (where the share

of informed traders is arguably lower) relative to stocks and gold.
20Da et al. (2021) find that a proxy of retail investors’ expectations negatively predicts future returns,

and more so among stocks with low institutional ownership and a high degree of extrapolation.
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Finally, in Proposition 4 we show how our theory predicts stronger and time-varying

extrapolation following a displacement shock when informed traders lose their aggregate

edge, consistent with suggestive evidence in Cassella and Gulen (2018) and Bybee (2023)

who find stronger extrapolation during the formation of bubbles.

1.5.2 Stable and Unstable Regions

Another feature of the AR(1) processes in (24) and (25) is that the system can be station-

ary or non-stationary, depending on whether b/̃a < 1 or b/̃a > 1. When b/̃a < 1, changes in

prices and in beliefs in (24) and (25) are stationary, and shocks eventually die out, so that

prices and beliefs exhibit momentum and converge to a new steady state. On the other

hand, when b/̃a > 1 the system is non-stationary and the influence of the feedback effect is

explosive: consecutive changes in prices and beliefs get larger and larger, and prices and

beliefs accelerate in a convex way, becoming extreme and decoupled from fundamentals.

As long as the feedback effect between prices and beliefs is constant, the response of

prices and beliefs to shocks is either always stationary and convergent, or it is always

non-stationary and explosive. Since we do not observe unbounded prices and beliefs in

response to normal times shocks (e.g. following earnings announcements), it is plausible

to assume that in normal times changes in prices and beliefs are stationary. For this to

be the case, it must be that in normal times the aggregate confidence of informed agents

is greater than the aggregate confidence of uninformed agents:21

b

ã
= 1

ζ
< 1 ⇐⇒ ζ > 1 ⇐⇒ ϕτI > (1 − ϕ)τU (29)

In the next section, we show how displacements can generate time-variation in the

strength of the feedback effect, and shift the economy across stable and unstable regions.

21The first equality follows from the fact that in (14) and (16) we saw that τi = τ̃i for i ∈ {I, U}, so
that ζ̃ = ζ. Substituting this in (28) yields (29).
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By bringing the explosive properties of unstable regions into play before the convergent

properties of stable regions take over again, displacements can lead to the formation of

accelerating bubbles and endogenous crashes (Greenwood et al. 2019).

2 Displacements

A “[d]isplacement is some outside event that changes horizons, expectations, profit op-

portunities, behavior – some sudden advice many times unexpected. Each day’s events

produce some changes in outlook, but few significant enough to qualify as displacements”

(Kindleberger 1978). Examples include the widespread adoption of a ground-breaking

discovery, such as railroads in the 1840s, the radio and automobiles in the 1920s, and

the internet in the 1990s; financial liberalization in Japan in the 1980s; or financial inno-

vations such as securitization prior to the 2008 financial crisis (Aliber and Kindleberger

2015).

While the exact nature of the displacement varies from one bubble episode to another,

what these shocks have in common is that they represent “something new under the

sun,” and their full implications for long term outcomes can only be understood gradu-

ally over time, as more information becomes available (Pástor and Veronesi 2009). When

the internet was first made available to the public in 1993, investors were aware of this

new technology, but at the time nobody knew the full potential of this invention. The

development of blockchains as decentralized ledgers has paved the way for cryptocurren-

cies. However, we are yet to learn about the full implications of this technology or the

likelihood of their future adoption, and cryptos have indeed been prone to bubbly be-

havior, as recently documented in Kogan et al. (2023). Moreover, historical narratives

also associate displacements with periods characterized with large changes in the compo-

sitions of traders in the market, with retail investors playing a prominent role (Aliber and

Kindleberger 2015).
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This is in stark contrast to normal times shocks, which may come in the form of regular

earnings announcements. These are not generally associated with either large swings in

the composition of traders in the market, nor with stark changes in investors’ relative

confidence levels. Following these news events, sophisticated traders are well trained to

immediately process and understand the content of such news (e.g. the implications of

same store sales on long term outcomes), while uninformed traders can learn about their

implications more slowly, by seeing how the market reacts to them. As we saw in Section

1, in normal times informed traders are always one step ahead of uninformed traders, and

their informational edge is constant.

From a modeling point of view, we can capture displacements as shocks that generate

time-variation in either the composition of traders in the market, or in the relative confi-

dence of informed and uninformed traders. We model displacements as being “something

new under the sun”, which can alter the relative confidence of informed and uninformed

traders, and we discuss alternative ways of modeling displacement shocks in Section 2.6.

In this section we show how displacement shocks generate time-variation in informed

agents’ edge, which in turn leads to time-varying extrapolation, and a time-varying

strength of the feedback between prices and beliefs. This can shift the economy be-

tween stable and unstable regions. Specifically, when the displacement first materializes,

informed agents’ edge is wiped out, thus increasing the influence on prices of uninformed

agents’ beliefs and the strength with which they extrapolate. Both of these forces fuel the

feedback between prices and beliefs. If the uncertainty associated with the displacement

is high and persistent enough, the economy can enter the unstable region, leading prices

and beliefs to accelerate away from fundamentals. Then, as informed agents learn about

the new technology and regain their edge, the feedback effect weakens, and the economy

re-enters the stable region. This leads the bubble to burst and prices and beliefs to return

back towards fundamentals.

We conclude this section by discussing how the speed of information arrival shapes
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the duration and amplitude of bubbles, and other ways of modeling a displacement.

2.1 Displacement Shocks

We model displacements as an uncertain positive shock to long-term outcomes that agents

can learn about only gradually over time. Starting from a normal-times steady state where

uninformed agents’ beliefs are consistent with the price they observe, in period t = 0 both

informed and uninformed traders learn that there is “something new under the sun,” but

do not know the exact implications of such shock for long-term outcomes. Specifically, in

period t = 0, all agents learn that the terminal dividend changes by an uncertain amount

ω ∼ N(µ0, τ−1
0 ), where µ0 > 0:22

DT = D̄ +
∞∑

j=0
βjuj + ω (30)

Initially, all agents share the same unconditional prior over ω. Starting in period t =

1, each period informed agents observe a common signal that is informative about the

displacement, st = ω + ϵt with ϵt ∼iid N(0, τ−1
s ). Uninformed agents do not observe these

signals but still learn information from past prices.

We solve the model using the same three steps we used in normal times: first, we specify

what truly generates price changes agents observe. Second, we specify what uninformed

agents think is generating these price changes, and find the mapping PET agents use to

extract information from prices. Third, we solve the model recursively, and discuss the

properties of equilibrium outcomes.

22In Section 2.5 we also consider the case where µ0 < 0, and show how with partial equilibrium
thinking negative bubbles are dampened relative to positive ones.
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2.2 True Price Function following a Displacement

Following a displacement, informed agents observe new signals ut and st in each period,

and they revise their beliefs via standard Bayesian updating:

EI,t[DT ] = EI,t−1[DT ] + ut + wt (31)

VI,t[DT ] = VI,t

[ ∞∑
h=1

βhut+h + ω

]
= VI + (tτs + τ0)−1 (32)

where wt ≡ EI,t[ω] −EI,t−1[ω] = τs

tτs+τ0
(st − EI,t−1[ω]) is informed agents’ revision of their

beliefs about the displacement ω in light of the new signal st.

On the other hand, in each period t, uninformed agents learn ũt−1 + w̃t−1 from the

price change they observe in period t − 1, and their posterior beliefs are:

EU,t[DT ] = EU,t−1[DT ] + ũt−1 + w̃t−1 (33)

VU,t[DT ] = VU,t

[
ut +

∞∑
h=1

βhut+h + ω

]
= VU + ((t − 1)τs + τ0)−1 (34)

Importantly, (32) and (34) show that following a displacement informed traders’ edge

becomes time-varying:

ζt =
(

ϕ

1 − ϕ

)(
VU + ((t − 1)τs + τ0)−1

VI + (tτs + τ0)−1

)
(35)

Initially, informed agents lose their edge (all agents are just as clueless about the displace-

ment), and they then gradually regain it, as also shown in Figure 1a.

Given these beliefs, we find that, following a displacement, price changes capture both
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changes in mean beliefs and changes in confidence levels:23

∆Pt = at (ut + wt)︸ ︷︷ ︸
instantaneous response of I

to new information

+ bt (ũt−1 + w̃t−1)︸ ︷︷ ︸
lagged response of U

from learning from past prices

+
(
Pt|t−1 − Pt−1

)
︸ ︷︷ ︸
changes in confidence

(37)

where:

(Pt|t−1 − Pt−1) ≡ ∆atEI,t−1[DT ] + ∆btEU,t−1[DT ]︸ ︷︷ ︸
change in relative weight on

I and U traders’ beliefs

− ∆ct︸︷︷︸
changes in

risk premium

(38)

and where at ≡ ζt

1+ζt
= 1 − bt, bt ≡ 1

1+ζt
and ct ≡ AZ

ϕτI,t+(1−ϕ)τU,t
are defined as in normal

times, but are now time-varying.

Equation (37) shows that price changes now reflect three components. The first two

components are due to changes in mean beliefs of both informed and uninformed traders,

just as in normal times. However, displacements now bring into play a third source of

price variation, which is due to changes in informed and uninformed traders’ relative

confidence levels. As shown in the definition of (Pt|t−1 − Pt−1) in (38), changes in relative

confidence levels manifest themselves in two ways. First, changes in relative confidence

levels lead to a change in the relative weights on informed and uninformed traders’ beliefs

(∆at and ∆bt), thus leading to changes in the average belief, even holding individual level

beliefs fixed. Second, changes in confidence levels also lead to changes in the aggregate

risk-bearing capacity, therefore adding an additional source of price variation via changes

in the risk premium component (∆ct).

23Market clearing yields:
Pt = atEi,t[DT ] + btEU,t[DT ] − ct (36)

where at, bt, and ct are defined in the main text. Taking first differences of this expression, using agents’
posterior beliefs in (31) and (33), and rearranging yields the expression in (37).
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2.3 Micro-founding Time-varying Price Extrapolation

Just as we did in Section 1, to understand what information uninformed agents extract

from past prices, we start by specifying what uninformed agents think is generating the

price changes they observe. This, in turn, requires us to work out PET agents’ beliefs

about other agents’ actions and beliefs. Following a displacement, PET agents think that

in period t − 1 informed agents trade on all signals they have received up until period

t − 1, {ũj}t−1
j=0 and {s̃j}t−1

j=1:

ẼI,t−1[DT ] = ẼI,t−2[DT ] + ũt−1 + w̃t−1 (39)

ṼI,t−1[DT ] = VI + ((t − 1)τs + τ0)−1 (40)

where w̃t ≡ ẼI,t[ω] − ẼI,t−1[ω] = τs

tτs+τ0

(
s̃t − ẼI,t−1[ω]

)
.

Moreover, PET agents think that all other uninformed agents do not learn information

from prices, and instead trade on their fixed prior beliefs:

ẼU,t−1[DT ] = ẼU,t−2[DT ] = D̄ + µ0 (41)

ṼU,t−1[DT ] = VU + (τ0)−1 (42)

where (42) shows that following a displacement PET agents believe that other uninformed

agents face greater and constant uncertainty as they do not learn new information after

the displacement is announced. Combining (40) and (42), we see that PET agents’ per-

ception of informed agents’ edge (ζ̃t−1) is initially diluted by the displacement’s increase

in aggregate uncertainty, and it then gradually rises over time as informed agents learn

more about it:

ζ̃t−1 =
(

ϕ

1 − ϕ

)(
VU + (τ0)−1

VI + ((t − 1)τs + τ0)−1

)
(43)

Given these beliefs, PET agents think that following a displacement price changes
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only reflect two components (rather than three components as in (37)), as they once

again neglect that uninformed traders are also learning information from prices:24

∆Pt−1 = ãt−1 (ũt−1 + w̃t−1)︸ ︷︷ ︸
instantaneous response of I

to new information

+
(
P̃t−1|t−2 − Pt−2

)
︸ ︷︷ ︸
changes in confidence

(45)

where
(
P̃t−1|t−2 − Pt−2

)
captures changes in prices due to changes in confidence levels:

(
P̃t−1|t−2 − Pt−2

)
≡

(
∆ãt−1ẼI,t−2[DT ] + ∆b̃t−1ẼU,t−2[DT ]

)
︸ ︷︷ ︸

change in relative weight on
I and U traders’ beliefs

− ∆c̃t−1︸ ︷︷ ︸
changes in

risk premium

(46)

PET agents then invert the mapping in (45), and attribute the unexpected part of

the price change they observe to new information (ũt−1 + w̃t−1), leading to time-varying

extrapolation.

Proposition 4 (Time-varying Extrapolation). Following a displacement shock, partial

equilibrium thinking leads to time-varying price extrapolation, with traders extrapolating

the unexpected part of the price change they observe. Posterior beliefs are given by:

EU,t[DT ] = EU,t−1[DT ] + 1
ãt−1

(
Pt−1 − P̃t−1|t−2

)
(47)

where 1
ãt−1

= 1 + 1
ζ̃t−1

.

As well as being consistent with empirical evidence that documents a time-varying

extrapolation parameter (Cassella and Gulen 2018, Bybee 2023), micro-founding the ex-
24The perceived market clearing condition yields:

Pt = ãtẼi,t[DT ] + b̃tẼU,t[DT ] − c̃t (44)

where ãt, b̃t, and c̃t are defined in the main text. Taking first differences of this expression, using agents’
posterior beliefs in (39) and (41), and rearranging yields the expression in (37). Notice in particular that
uninformed traders think other uninformed traders never update their beliefs, so this term does not show
up in (45).

28

Electronic copy available at: https://ssrn.com/abstract=4666338



trapolation parameter in this way allows us to understand the assumptions implicit in

models of constant price extrapolation. Specifically, they assume that following a large

structural break in prices, agents still forecast prices in exactly the same way as they did

before the structural break, which is counterfactual.

This also highlights another important point. We model partial equilibrium thinking

by staying as close as possible to the rational expectations benchmark. While the inference

problem is much simpler than the rational counterpart (since PET agents do not have

to think about higher-order beliefs) it still requires some degree of sophistication on the

part of uninformed traders. On the one hand, this is inherent in the nature of our bias,

where traders think they are the only ones learning information from prices, and think

they have an edge relative to their peers.25 On the other hand, the reduced form nature

of our bias translates into a very simple strategy and heuristic, which does not require

much sophistication. If traders think about what generates the price changes they are

learning from, it is natural for them to engage in constant price extrapolation when the

properties of the environment they are learning from are stable, and to adjust the degree

of extrapolation in response to a structural break. In other words, our theory can be

understood as explaining when and why agents change heuristics: they do so in response

to different types of shocks that change the properties of the environment.26

25Partial equilibrium thinking can either be seen as an example of the Lake-Wobegan (or better-than-
average) effect (Svenson 1981), or as agents paying limited attention to others’ informational inferences,
rather than having false beliefs about others’ inference (Eyster and Rabin 2010).

26This is the main distinguishing feature of our model relative to learning models where agents forecast
prices using some law of motion (Marcet and Sargent 1989, Evans and Honkapohja 1999, Adam and
Marcet 2011). For instance, in Adam et al. (2017), agents know the fundamental process but forecast
future prices according to constant-gain learning:

Et

[
Pt+1

Pt

]
= (1 − g)Et−1

[
Pt

Pt−1

]
+ g

(
Pt−1

Pt−2

)
(48)

This is similar in spirit to the expression we derived in Equation (47). The key difference is that we
microfound the degree of extrapolation, which in our model depends on the properties of the environment.
This allows us to explain why not all shocks to price growth lead to extreme responses, and which ones
do.
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2.4 Displacement, Bubbles and Crashes

By combining the results from Sections 2.2 and 2.3, we find that following a displacement

PET agents’ prices and beliefs evolve as follows:

∆Pt = at(ut + wt) +
(

bt

ãt−1

)
∆Pt−1 −

((
bt−1

ãt−1

)
(P̃t−1|t−2 − Pt−2) − (Pt|t−1 − Pt−1)

)
(49)

(ũt−1 + w̃t−1) =
(

at−1

ãt−1

)
(ut−1 + wt−1) +

(
bt−1

ãt−1

)
(ũt−2 + w̃t−2) − 1

ãt−1

(
P̃t−1|t−2 − Pt−1|t−2

)
(50)

These expressions are reminiscent of the AR(1) processes in (24) and (25), with two key

differences, which together allow for the formation of bubbles and crashes following a

displacement shock, as shown in Figure 2. First, the strength of the feedback between

prices and beliefs is now time-varying, so that equilibrium dynamics can now shift across

stable and unstable regions. When the equilibrium dynamics shift to a non-stationary

region, prices and beliefs accelerate away from fundamentals leading to the build up of

the bubble.27 Second, the last term in both (49) and (50) acts as a pull-back force, that

dampens increases in prices and beliefs during the formation of the bubble. It is this

term that ultimately allows uninformed agents’ beliefs to be disappointed at the peak of

the bubble, leading to reversals and a crash. We now discuss both of these differences in

detail.

Starting from the strength of the feedback effect, it now takes the following form:

bt

ãt

=
(

1
1 + ζt

)(
1 + 1

ζ̃t

)
(51)

27This is why the PET price path in Figure 2 is convex at first. The distinguishing feature of our
micro-foundation is that it allows for non-stationary dynamics without relying on a convex path of
fundamentals.
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Figure 1b shows that following a displacement the strength of the feedback effect ini-

tially increases as both the true and the perceived informational edges are diluted, and

then gradually declines as informed traders eventually regain their edge.28 Starting from

a stable region, if the increase in uncertainty generated by the displacement is large

enough, the economy enters an unstable region (bt/̃at > 1), before returning to a stable

one (limt→∞ bt/̃at < b/̃a < 1).29

Proposition 5 (Time-varying Strength of the Feedback Effect). When agents think in

partial equilibrium, the strength of the feedback effect between prices and beliefs becomes

time varying in response to a displacement shock. In each period t, it is decreasing both

in the true informational edge (ζt), and in uninformed agents’ perception of it (ζ̃t). In the

long-run, the feedback effect converges to a steady-state value strictly lower than 1.

While non-stationary regions allow prices and beliefs to become extreme and decou-

pled from fundamentals, a time-varying strength of the feedback effect is not enough to

lead to the bursting of the bubble. Indeed, we need uninformed agents to infer negative

information from prices (ũt−1+w̃t−1 < 0) and price changes to become negative (∆Pt < 0)

for prices and beliefs to revert back towards fundamentals and for the bubble to burst.

Moving from an unstable to a stable region simply ensures that price changes go from

being positive and increasing over time to positive and decreasing over time, but does

not deliver negative price changes on its own.30 Instead, to achieve the reversal, we need
28Using beliefs generated through Large Language Models, Bybee (2023) offers evidence that extrap-

olation is time-varying and heightened during price run-ups that then lead to crashes.
29In the long run the economy always returns to a stable region, as limt→∞ bt/̃at < b/̃a < 1 since

limt→∞(bt − b) = 0 and limt→∞(ãt − ã) > 0, where the last inequality follows from the fact that
limt→∞ ζ̃t =

(
ϕ

1−ϕ

)(
VU +(τ0)−1

VI

)
> ζ̃ =

(
ϕ

1−ϕ

)(
VU

VI

)
.

30In other words, a time-varying bt/̃at−1 would not be enough to get a reversal if equilibrium price
changes evolved as follows:

∆Pt = at(ut + wt) +
(

bt

ãt−1

)
∆Pt−1 (52)

Following a one-off positive shock to fundamentals (ut + wt > 0 for t = 0 and ut + wt = 0 for t > 0),
there would be no term that allows for ∆Pt to become negative, unlike the additional term in (49).
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Figure 1: Time variation in informed traders’ edge and in the strength of the feedback
effect following a displacement. The dotted line at b/̃a = 1 on the right panel separates the stable
region (b/̃a < 1) from the unstable region (b/̃a > 1). Starting from a normal times steady state, a
displacement is announced in period t = 0. This leads informed traders to lose their edge and the
strength of the feedback effect to initially rise. Then, as informed traders gradually regain their edge,
the strength of the feedback decline over time. The initial increase in b/̃a is increasing in the uncertainty
associated with the displacement (τ0)−1.
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stability together with the presence of the last correction term in (49), which allows price

changes to become negative.31

To gain further intuition as to why PET traders’ beliefs are eventually disappointed,

notice that the intercept term in (49) is coming from uninformed traders’ misunderstand-

ing of the part of the price change due to changes in confidence alone. Following a positive

displacement shock, PET agents mistakenly think that informed traders are more opti-

mistic than uninformed traders. Fixing individual beliefs, as informed traders regain

their edge over time, PET traders think that the average belief becomes more optimistic

(∆ãtẼI,t[DT ] + ∆b̃tD̄ > 0), and that this pushes prices up further. In reality informed

traders are less optimistic than uninformed traders, so that, as informed traders regain

their edge, the average belief actually becomes less optimistic over time and closer to

31Internet Appendix B.3 provides additional details of how reversals may only occur once bt

ãt
< 1.
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the rational benchmark (∆atEI,t[DT ] + ∆btEU,t < 0). This puts a negative (corrective)

pressure on prices. By over-estimating the part of the price change due to changes in

confidence levels, partial equilibrium thinkers eventually expect price rises that are higher

than the price changes that they observe. When this occurs, their beliefs are disappointed,

leading them to become more pessimistic, and the bubble to burst.

Figure 2 shows the path of equilibrium outcomes following a displacement shock.

Initially, as the economy enters the unstable region, prices and beliefs accelerate away

from fundamentals in a convex way, and reach levels several multiples of the fundamental

value of the asset (Greenwood et al. 2019). As the strength of the feedback effect weakens,

and the economy re-enters the stable region, PET agents’ expectations are disappointed,

leading the bubble to burst, and prices and beliefs to converge back towards fundamentals.

Partial equilibrium thinking naturally delivers these key characteristics of bubbles by

exploiting the properties of unstable regions. The duration of the bubble is then longer

and its amplitude greater when the uncertainty associated with the displacement is higher,

and it takes longer to resolve over time, as in these cases equilibrium dynamics spend

longer in the non-stationary region. Therefore, the exact shape of the bubble depends on

the speed with which information about the displacement becomes available over time. If

information about the displacement is revealed slowly at first, and at a faster rate once

the bubble bursts, the model can deliver a slower boom and a faster crash (Ordonez 2013).

Finally, while the initial stage of the bubble is associated with high trading volume

(Barberis 2018, Hong and Stein 2007), our model is also consistent with recent evidence

in DeFusco et al. (2020) that documents a quiet period before the bust, during which

trading volume is falling while prices are still rising. Partial equilibrium thinking leads to

endogenously heterogeneous beliefs, and during the formation of the bubble disagreement

increases initially at an increasing and then at a decreasing rate.
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Figure 2: Bubbles and crashes following a displacement. Starting from a normal times steady
state, a displacement ω ∼ N(µ0, τ−1

0 ) is announced in period t = 0, and we let its realized value be
ω = µ0. Informed agents then receive a signal st = ω + ϵt with ϵt ∼ N(0, τ−1

s ) each period, where ϵ1 > 0
and ϵt = 0 ∀t > 1. This figure compares the path of equilibrium prices and trading volume, under rational
expectations and under partial equilibrium thinking.
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2.5 Negative Bubbles

Interestingly, negative bubbles with µ0 < 0 are not merely symmetric, and instead are

dampened relative to positive bubbles, as shown in Figure 3. To understand why this is the

case, we ought to focus on the true and perceived risk-premium components. Regardless of

the sign of the displacement shock, the gradual resolution of uncertainty over time exerts

an upward force on prices, as the greater level of aggregate confidence reduces the risk-

premium component. However, PET agents under-estimate this upward force, as they

believe that other uninformed traders are not learning and becoming more confident over

time. By under-estimating the increase in risk-bearing capacity, they then under-estimate

the upward force on prices coming from changes in risk premia, and instead attribute part

of this to better fundamentals. This force is at play both when the cash flow shock of the

displacement is positive, and when it is negative, therefore amplifying positive bubbles

and dampening negative ones. This in contrast to equilibrium dynamics with constant
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price extrapolation, where this dampening channel is absent, and where negative bubbles

would actually be more pronounced than positive ones following a displacement shock.32

Figure 3: Asymmetry between Positive and Negative Bubbles. Starting from a normal times
steady state, a displacement ω ∼ N(µ0, τ−1

0 ) is announced in period t = 0. Informed agents then receive a
signal st = ω + ϵt with ϵt ∼ N(0, τ−1

s ) each period, where ϵ1 > 0 and ϵt = 0 ∀t > 1. This figure compares
the path of equilibrium prices for positive and negative bubbles. For a given size shock in absolute value,
negative bubbles are dampened relative to positive bubbles.
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2.6 Other Types of Displacements

A key lesson from our analysis so far is that shocks that generate bubbles and crashes

must have two properties: they must shift the economy to an unstable region, and such a

shift must be temporary. So far, we have considered one possible way to achieve this via

a positive shock that creates uncertainty, which gradually resolves over time. However,

the sources of variation in bt

ãt
discussed in Proposition 2 are informative about other types

of shocks which may contribute to the formation of bubbles and crashes.
32Intuitively, the initial increase in uncertainty associated with the displacement exerts a downward

pressure on prices, which dampens positive cash flow shocks, and amplifies negative cash flow shocks.
Fixing the size of the cash flow shock in absolute value, this asymmetry then leads to a greater initial
price change following a negative shock relative to the same size positive shock. Extrapolating a greater
initial price change with constant price extrapolation then leads to more amplified dynamics in response
to negative shocks.
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Specifically, we can write the strength of the feedback effect as follows:

bt

ãt

=
(

1
1 + ζt

)(
1 + 1

ζ̃t

)
< 1 ⇐⇒

(
ϕt

1 − ϕt

τI,t

τU,t

)(
ϕ̃t

1 − ϕ̃t

τ̃I,t

τ̃U,t

)
> 1 (53)

where the second inequality simply follows from re-arranging the first one, and using the

definition of the true and perceived informational edges.33 Moreover, (53) generalizes our

earlier expressions by allowing the fraction of informed agents in the market to be time-

varying, and by allowing uninformed agents to be misspecified about this quantity (ϕ̃t ̸=

ϕt). There are four components of the information structure that can then lead to time-

variation in the strength of the feedback effect: the true and the perceived confidence of

informed agents relative to uninformed agents, and the true and the perceived composition

of agents in the market. Temporary shocks to these quantities can also contribute to the

time-varying strength of the feedback effect.

For example, Greenwood and Nagel (2009) find that young inexperienced investors

increased exposure to technology stocks during the dot.com bubble, and decreased it dur-

ing the crash. More generally, historical narratives associate displacements with large

changes in the composition of agents in the market (Brennan 2004, Aliber and Kindle-

berger 2015). This paper highlights how changes in the composition of traders constitute

another source of time-variation in the strength of the feedback effect, and hints to how

the timing of these changes can play an important role in determining the shape and

amplitude of bubbles.

3 Inter-temporal Trading Motives

When explaining the stage of ‘euphoria’ characteristic of bubbles, Kindleberger (1978)

describes how “[i]nvestors buy goods and securities to profit from the capital gains associ-

33Re-arranging the first inequality, we get: (1 + ζt) >
(

1+ζ̃t

ζ̃t

)
⇐⇒ ζtζ̃t > 1.
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ated with the anticipated increases in the prices of these goods and securities.” So far, we

have been silent on the role of destabilizing speculation in contributing to the formation

of bubbles, as we focused on understanding the role of higher order beliefs in misinference

in isolation of its role in forecasting: while partial equilibrium thinking affects how traders

interpret past outcomes, speculative motives depend on traders’ beliefs of future equilib-

rium prices. In this respect, partial equilibrium thinking provides a micro-foundation for

the existence of mispricing, while higher order beliefs in forecasting are more useful in

understanding whether mispricing persists or whether it is arbitraged away (Abreu and

Brunnermeier 2002).

To study how partial equilibrium thinking interacts with speculative motives, we now

change agents’ objective function. Instead of having agents who are only concerned with

forecasting the terminal dividend as in (3), we now let agents have mean-variance utility

over next period wealth, which leads them to forecast next period’s payoff:34

Πt+1 = βPt+1 + (1 − β)Dt (54)

which simply reflects traders’ beliefs that with probability β the asset is alive next period,

and is worth Pt+1, and with probability (1 − β) the asset dies, and pays out a terminal

dividend Dt = D̄ + ∑t
j=0 uj in normal times and Dt = D̄ + ∑t

j=0 uj + ω following a

displacement. Taking first order conditions, we have that agents now trade according to

the following asset demand function, given their beliefs:

Xi,t = Ei,t[Πt+1] − Pt

AVi,t[Πt+1]
(55)

34Keeping the mean-variance utility function shuts down any potential wealth effect. See An et al.
(2022) and Han and Makarov (2021) for studies focusing on this channel during bubbles. Relatedly, our
uninformed traders consistently loose money but do not face margin constraints. Kogan et al. (2006)
show that irrational traders can have a substantial price impact even when their wealth approaches zero.
Kogan et al. (2017) provide conditions for behavioral agents to survive in a dynamic trading setting.

37

Electronic copy available at: https://ssrn.com/abstract=4666338



In Internet Appendix B.4 we solve the model with speculative motives using the same

three steps as in Section 2, and show that the true price function is linear in agents’

beliefs, and that partial equilibrium thinking still provides a micro-foundation for price

extrapolation:

Pt = atEI,t[Πt+1] + btEI,t[Πt+1] − ct (56)

EU,t[Πt+1] = EU,t−1[Πt+1] + θt

(
Pt−1 − P̃t−1|t−2

)
(57)

where at, bt, ct and θt are once again constant in normal times, but become time-varying

following a displacement. While these coefficients still depend on the properties of the

environment, their functional form depends on agents’ higher order beliefs. Specifically,

since agents are forecasting future endogenous outcomes, they need to forecast other

agents’ future beliefs. While partial equilibrium thinking helps to pin down uninformed

agents’ higher order beliefs (they simply assume that all agents trade on their own private

information and that this is common knowledge), it allows for more flexibility about

informed agents’ higher order beliefs.

In this section, we consider two cases.35 First, we let informed agents understand

uninformed agents’ biased beliefs, which in turn implies that they understand that mis-

pricing is predictable. Second, we consider the case where informed agents mistakenly

believe that all other agents are rational and extract the right information from prices.

We refer to the first type of speculators as being “PET-aware,” and to the second type as

being “PET-unaware.” This lines up with the distinction in practical asset management

35While we only consider the case where all informed traders are either “PET-aware” or “PET-
unaware” and this is common knowledge to them, Abreu and Brunnermeier (2002) provide a compre-
hensive study of how higher order beliefs in forecasting future outcomes can make mispricing persistent
before the eventual bursting of the bubble. Our paper is complementary to theirs and our core contribu-
tion considers a very distinct channel, which is why we shut down speculative motives in the main part
of our analysis: our focus is on how higher order beliefs affect inference from past outcomes and provides
an explanation of why mispricing might exist in the first place, which is instead taken as given in Abreu
and Brunnermeier (2002).
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between investors who think about behavioral biases in the market, and those who only

concentrate on the gap between market prices and their estimates of fundamentals.

Figure 4 contrasts the dynamics of equilibrium outcomes in normal times and fol-

lowing a displacement, with and without speculative motives. As in the case without

speculation, panel (a) shows that normal times dynamics only exhibit a small degree of

momentum and speculative motives keep prices closer to fundamentals. After a displace-

ment shock, however, panel (b) of Figure 4 makes clear that the dynamics heavily depend

on the behavior of informed speculators. When informed agents understand other agents’

biases, they engage in destabilizing speculation and amplify the bubble. Intuitively, when

informed agents realize that mispricing is predictable, they understand that higher prices

today translate into more optimistic beliefs by uninformed agents and higher prices tomor-

row. This increases informed agents’ expected capital gains and induces them to demand

more of the asset today, inflating prices further (as in De Long et al. 1990). At some

point the extrapolation of uninformed agent runs out of steam as PET traders’ beliefs are

disappointed (by the same mechanism described in Section 2.4). When this is the case,

Informed speculators realize that prices will start falling, and thus start speculating in

the opposite direction, amplifying the crash. In other words, informed speculators realize

that a lower price fall during the burst will translate into more pessimistic beliefs for

uninformed traders. This increases the incentives for informed speculators to short the

asset, leading to a further price fall.

These results are also consistent with those we obtain in Internet Appendix D, where

we allow informed traders to maximize utility over terminal wealth (as opposed to next

period wealth), as in He and Wang (1995). Even in that case, dynamic trading motives

generate a two-way feedback effect between prices and expected capital gains, and this

further amplifies the two-way feedback effect between prices and beliefs due to misinfer-

ence.

To take advantage of predictable mispricing, “PET-aware” speculators require a high
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Figure 4: Normal Times and Bubbles and crashes with speculators. Panel (a) compares
the path of equilibrium prices under rational expectations, partial equilibrium thinking, “PET-aware”
speculation, and “PET-unaware” speculation in normal times. Starting from a normal times steady state,
Panel (b) considers a displacement ω ∼ N(µ0, τ−1

0 ) announced in period t = 0. Informed agents then
receive a signal st = ω + ϵt in each period, where ϵ1 > 0 and ϵt = 0 ∀t > 1.
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level of understanding of other agents’ actions and beliefs. Alternatively, we consider

the case where informed agents mistakenly believe that they live in a rational world and

think that uninformed agents are able to recover the right information from past prices.

In this case, informed agents believe that any mispricing will be corrected next period.

This leads them to trade more aggressively on their own information, thus keeping prices

closer to fundamentals, and arbitraging the bubble away.

4 Conclusion

This paper makes two contributions. First, we provide a micro-foundation for the degree

of price extrapolation with a dynamic theory of “Partial Equilibrium Thinking” (PET),

in which uninformed agents mistakenly attribute any price change they observe to new

information alone, when in reality part of the price change is due to other agents’ buy-

ing/selling pressure (Bastianello and Fontanier 2023). We show that when agents think
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in partial equilibrium the degree of extrapolation varies with the information structure,

and is decreasing in informed agents’ informational edge.

Second, we draw a distinction between normal times shocks which do not lead to large

swings in the aggregate edge of informed and uninformed traders, and “displacement

shocks,” which instead do. Consistent with the Kindleberger (1978) narrative of bubbles,

not every large upswing leads inevitably to a crash (Greenwood et al. 2019). Instead,

bubble and crashes only occur following displacement type of shocks.

Specifically, we show that in normal times, informed agents’ edge is constant, and

PET delivers constant and weak price extrapolation that generates momentum. By con-

trast, following a displacement, informed agents’ edge is temporarily wiped out, and PET

agents’ degree of extrapolation is stronger at first, but then gradually dies down, leading

to bubbles and endogenous crashes. This provides a unifying theory of both weak depar-

tures from rationality in normal times, and of extreme bubbles and crashes following a

displacement.

Studying the empirical properties of the time-variation in price extrapolation is an

important avenue for future research (Cassella and Gulen 2018, Bybee 2023). Not only

would this shed further light on traders’ expectation formation process, but it also has

important policy implications. For example, our work suggests that policymakers should

be weary of creating conditions that decrease the aggregate edge of informed traders,

such a long periods of cheap credit that may increase the proportion of retail traders.

Additionally, whether transaction taxes or other financial regulation tools could prevent

run-ups in extrapolation is an interesting question. Finally, our micro-foundation for the

degree of extrapolation could help us further our understanding of whether monetary

policy can be used to lean against the wind and prevent the formation of bubbles. Our

analysis suggests that extrapolative beliefs can be relatively innocuous in normal times,

but that an increasing degree of extrapolation is a sign of bubble formation. How traders

would adjust their learning heuristics in the face of an increase in interest rates, however,
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remains an open question.
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A Proofs

A.1 Proof of Proposition 1: Micro-foundation

Combining (6) and (21) , we find that:

EU,t[DT ] = EU,t−1[DT ] +
(1

ã

)
∆Pt−1 (A.1)
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which provides a micro-foundation for extrapolative beliefs.

To see how the size of the bias varies with informed traders’ edge, start from (24):

ũt−1 = ut−1 +
(

b

ã

)
ũt−2 (A.2)

If we consider the impulse response function to a one-off shock to fundamentals in period

t = 1, so that ut ̸= 0 for t = 1 and ut = 0 for t > 1, we can iterate the above expression

backwards, and find that:

ũt =
(

b

ã

)t−1

u1 (A.3)

which shows that while uninformed traders extract the right signal in the first period after

the shock, they extract a biased signal in each period thereafter. Specifically, since ut = 0

for t > 1, we have that:

ũt − ut =
(

b

ã

)t−1

u1 (A.4)

so that for a given fundamental shock u1 the bias is increasing in the strength of the

feedback effect b/̃a.Since the strength of the feedback effect in (28) is decreasing in the

true and perceived informational edges, it follows that the bias in uninformed traders’

beliefs is also decreasing in both these terms.

A.2 Proof of Proposition 2: Strength of the Feedback Effect

Combining (8) with (28), we find that:

b

ã
=
(

1
1 + ζ

)(
1 + 1

ζ̃

)
=

 1
1 + 1

1
ϕ

−1
τI

τU


1 +

(
1
ϕ

− 1
)

1
τ̃I

τ̃U

 (A.5)

The first equality shows that the strength of the feedback effect is decreasing in both the

true informational edge, ζ, and in uninformed agents’ perception of it, ζ̃. The second
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equality shows that the strength of the feedback effect is decreasing in the fraction of

informed agents in the market, ϕ, and in the true and perceived confidence of informed

agents relative to uninformed agents τI/τU , τ̃I/τ̃U .

A.3 Proof of Proposition 3: Deviations from Rationality

When traders have rational expectations, they infer the right information from prices at

each point in time. Following a one-off shock in period 0, EU,t[DT ]REE = D̄ + u0 for

t > 0. This reflects that rational uninformed traders understand that there is no new

information after period 0, and that all other price changes they observe are due to the

lagged response of all uninformed traders who are also learning information from prices.

Following the second price rise, they no longer update their beliefs. The corresponding

equilibrium prices are then given by:

P REE
t = P̄ + ∆P0 + ∆P1 +

t∑
j=2

∆Pt︸ ︷︷ ︸
=0

= P̄ + au0 + bu0 ∀t > 0 (A.6)

where ∑t
j=2 ∆Pt = 0 as neither informed nor uninformed agents update their beliefs after

period t = 1, and in normal times the risk-premium component
(

AZ
ϕτI+(1−ϕ)τU

)
is also

constant over time.

On the other hand, from (11) and (A.1), together with the fact that in normal times

a = ã, we know that when uninformed traders think in partial equilibrium, equilibrium

beliefs and prices are given by:

EU,t[DT ] = D̄ + u0 +
t−1∑
j=1

(
b

ã

)j

u0 ∀t > 1 (A.7)

Pt = P̄ + au0 + bu0 +
t∑

j=2

(
b

ã

)j

(au0) ∀t > 1 (A.8)
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Comparing PET to REE outcomes, we see that when traders think in partial equilib-

rium, deviations from rational outcomes are given by:

EU,t[DT ] − EREE
U,t [DT ] =

t−1∑
j=1

(
b

ã

)j

u0 ∀t > 1 (A.9)

Pt − P REE
t =

t∑
j=2

(
b

ã

)j

(au0) =
t−1∑
j=1

(
b

ã

)j

(bu0) ∀t > 1 (A.10)

where the last equality uses the fact that in normal times ã = a.

From Proposition 2, we know that b
ã

is decreasing in ζ, ζ̃, ϕ, τI

τU
and τ̃I

τ̃U
. Moreover,

from (10) we know that b is also decreasing in ζ, which is itself increasing in ϕ and τI

τU
.

Combining these results with (A.9) and (A.10), we obtain the comparative statics in

Proposition 3 ∀t > 1. In particular, when the equilibrium is stable these comparative

statics also hold in limt→∞, as the economy approaches the new steady state.

A.4 Proof of Proposition 4: Time-varying Extrapolation

Before the displacement is announced, the degree of extrapolation in normal times is:

θ = 1 + 1
ζ̃

= 1 +
(

1
ϕ

− 1
)

VI

VU

(A.11)

Following a displacement, inverting equation (45) yields:

ũt−1 + w̃t−1 = 1
ãt−1

(
∆Pt−1 −

(
P̃t−1|t−2 − Pt−2

))
(A.12)

Using the fact that EU,t[DT ] = EU,t−1[DT ]+ũt+w̃t, and also that ∆Pt−1−P̃t−1|t−2+Pt−2 =

Pt−1 − P̃t−1|t−2, we get:

EU,t[DT ] = EU,t−1[DT ] + 1
ãt−1

(
Pt−1 − P̃t−1|t−2

)
(A.13)
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where 1
ãt−1

= 1 + 1
ζ̃t−1

is time-varying (as discussed in the main text), and captures the

strength with which partial equilibrium thinkers extrapolate price changes.

A.5 Proof of Proposition 5: Time-varying Feedback Effect

In (51), we showed that, following a displacement, the strength of the feedback effect

takes the following form:

bt−1

ãt−1
=
(

1
1 + ζt−1

)(
1 + 1

ζ̃t−1

)
(A.14)

which directly shows that the feedback effect is decreasing in both the true and perceived

informational edges. The true and perceived informational edges were derived in (35) and

(43) as follows:

ζt =
(

ϕ

1 − ϕ

)(
VU + ((t − 1)τs + τ0)−1

VI + (tτs + τ0)−1

)
(A.15)

ζ̃t−1 =
(

ϕ

1 − ϕ

)(
VU + (τ0)−1

VI + ((t − 1)τs + τ0)−1

)
(A.16)

Since both these quantities are time-varying, it follows that (A.14) is also time-varying.

Taking the limit of this expression, we find that:

lim
t→∞

ζt =
(

ϕ

1 − ϕ

)(
VU

VI

)
(A.17)

lim
t→∞

ζ̃t−1 =
(

ϕ

1 − ϕ

)(
VU + (τ0)−1

VI

)
(A.18)

and hence that limt→∞ ζt < limt→∞ ζ̃t−1 which directly implies limt→∞
bt−1
ãt−1

< 1.
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Internet Appendix

B Additional Derivations

B.1 Rational Expectations

When uninformed traders have rational expectations, they perfectly understand what

generates price changes they observe. In turn, this requires them to understand other

traders’ beliefs, and actions.

Formally, rational agents think that in period t−1 informed agents update their beliefs

with the new fundamental information they receive, ũt−1:36

ẼI,t−1[DT ] = ẼI,t−2[DT ] + ũt−1 (B.1)

ṼI,t−1[DT ] =
(

β2

1 − β2

)
σ2

u ≡ ṼI = VI (B.2)

Moreover, they also understand that all other uninformed agents learn information

from past prices. Specifically, they know that in period t − 1 uninformed traders update

their beliefs by ũt−2, which is the same signal that they extract from Pt−2:

ẼU,t−1[DT ] = ẼU,t−2[DT ] + ũt−2 (B.3)

ṼU,t−1[DT ] =
(

1
1 − β2

)
σ2

u ≡ ṼU = VU (B.4)

To be clear on notation, notice that, while ũt−2 is in uninformed traders’ information

set starting in period t − 1, ũt−1 is the signal that uninformed traders are extracting from

prices in period t.

36The use of t−1 subscripts instead of t is to highlight that uninformed agents learn information from
past prices, so that in period t they must understand what generated the price in period t − 1, as this is
the price they are extracting new information from.
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Rational agents then think that the equilibrium price in period t − 1 is given by:

Pt−1 = ãẼI,t−1[DT ] + b̃ẼU,t−1[DT ] − c̃ (B.5)

where: ã ≡ ϕτ̃I

ϕτ̃I+(1−ϕ)τ̃U
= ζ̃

1+ζ̃
, b̃ ≡ (1−ϕ)τ̃U

ϕτ̃I+(1−ϕ)τ̃U
= 1

1+ζ̃
and c̃ ≡ AZ

ϕτ̃I+(1−ϕ)τ̃U
. Since we saw in

(B.2) and (B.4) that uninformed traders have correct beliefs about the posterior variances

of both informed and uninformed traders, it follows that ã = a, b̃ = b and c̃ = c, where a,

b and c are the coefficients in the true price function in (9).

Taking first differences of (B.2) and (B.4), substituting them into the first difference

of (B.5), and using the fact that ã = a, b̃ = b and c̃ = c, we find that rational traders

understand that price changes reflect two sources of price variation, which capture changes

in beliefs of both informed and uninformed traders:

∆Pt−1 = a ũt−1︸ ︷︷ ︸
instantaneous response

+ b ũt−2︸ ︷︷ ︸
lagged response

(B.6)

They then invert this mapping to extract the following signal from past prices:

ũt−1 =
(1

a

)
∆Pt−1 −

(
b

a

)
ũt−2 (B.7)

Lagging the true price function (11), and substituting it into (B.7), we then find that

uninformed traders are able to extract the right information from past prices:

ũt−1 = ut−1 (B.8)
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B.2 Displacements, Bubbles and Crashes

In normal times, the strength of the feedback effect is given by:

b

ã
=
(

1
1 + ζ

)(
1 + 1

ζ̃

)
= 1

ζ
< 1 (B.9)

where the second equality follows from the fact that in normal times ζ = ζ̃ =
(

ϕ
1−ϕ

)
VU

VI
,

and the last inequality follows from the fact that the economy must be in a stable region

in normal times.

Following a displacement, the strength of the feedback effect is given by:

bt

ãt

=
(

1
1 + ζt

)(
1 + 1

ζ̃t

)
(B.10)

where in t = 0:

ζ0 = ζ̃0 =
(

ϕ

1 − ϕ

)
VU + (τ0)−1

VI + (τ0)−1 (B.11)

and in t > 0:

ζt =
(

ϕ

1 − ϕ

)
VU + ((t − 1)τs + τ0)−1

VI + (tτs + τ0)−1 (B.12)

ζ̃t =
(

ϕ

1 − ϕ

)
VU + (τ0)−1

VI + (tτs + τ0)−1 (B.13)

Combining (B.10) and (B.11), we find that in period t = 0 the strength of the feedback

effect is given by:

b0

ã0
= 1

ζ0
= 1

ζ
+
(

1
ζ0

− 1
ζ

)
= b

ã
+
(

1 − ϕ

ϕ

)(
VU − VI

VU

)
(τ0)−1

VU + (τ0)−1 (B.14)

where the second equality simply adds and subtracts the strength of the feedback effect
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in normal times b
ã

= 1
ζ
, and the last equality uses ζ = ζ̃ =

(
ϕ

1−ϕ

)
VU

VI
and (B.11) above,

and rearranges.

Ceteris paribus, for the strength of the feedback effect to enter the unstable region we

need the uncertainty associated with the displacement (τ0)−1 to be high enough:

b0

ã0
> 1 ⇐⇒ (τ0)−1 >

(
1 − b

ã

) (
ϕ

1−ϕ

) (
VU

VU −VI

)
VU

1 −
(
1 − b

ã

) (
ϕ

1−ϕ

) (
VU

VU −VI

) (B.15)

where (1 − b/̃a) > 0 from (B.9). In the long run, as uncertainty about the displacement is

resolved:

ζ∞ ≡ lim
t→∞

ζt =
(

ϕ

1 − ϕ

)
VU

VI

= ζ (B.16)

ζ̃∞ ≡ lim
t→∞

ζ̃t =
(

ϕ

1 − ϕ

)
VU + (τ0)−1

VI

> ζ̃ (B.17)

Combining these expressions:

lim
t→∞

bt

ãt

=
(

1
1 + ζ∞

)(
1 + 1

ζ̃∞

)
<

b

ã
< 1 (B.18)

which shows that in the long run the economy always returns to a stable region, with a

steady state feedback effect that is weaker than the original normal times feedback effect.

In the main text we show that when the strength of the feedback effect evolves in this

way, prices and beliefs are initially non-stationary and accelerate away from fundamentals

in a convex way. As the feedback effect then weakens towards its new steady state

level, it eventually returns into a stable region, leading uninformed agents’ beliefs to

be disappointed, the bubble to burst, and prices and beliefs to converge back towards

fundamentals.
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B.3 Bursting the Bubble

To see how these forces play a joint role in bursting the bubble, and how the reversal can

only occur once the economy returns to a stable region, we can substitute the definitions

of (Pt−1 − Pt−1|t−2) and (Pt−1 − P̃t−1|t−2) into (50), to find that beliefs evolve as follows:

ũt−1 + w̃t−1 =
(

at−1

ãt−1

)
(EI,t−1[DT ] − E0[DT ])

−
(

1 − bt−1

ãt−1

)
(EU,t−1[DT ] − E0[DT ]) + 1

ãt−1
(c̃t−1 − ct−1) (B.19)

where E0[DT ] = D̄ + µ0 is agents’ unconditional prior belief when the displacement is

announced. For the bubble to burst, we need ũt−1 + w̃t−1 to eventually turn negative.

If we consider a one-off positive shock, such that EI,t−1[DT ] = EI,1[DT ] > E0[DT ] for all

t ≥ 1, equation (B.19) makes clear that as long as the economy is in a unstable region and
bt−1
ãt−1

> 1, PET agents continue to extract positive information from prices, and therefore

become increasingly optimistic.37 In other words, when the economy is in an unstable

region, the lagged response of uninformed agents always raises prices by more than what

uninformed agents would expect from changes in confidence alone. On the other hand, this

is no longer the case once the economy returns to a stable region and the feedback between

outcomes and beliefs runs out of steam. At the peak of the bubble uninformed agents’

beliefs vastly exceed fundamentals, and the term in (EU,t−1[DT ] − E0[DT ]) dominates in

determining the sign of the news that uninformed agents extract from past prices in

(B.19). Once the economy returns into a stable region and bt−1
ãt−1

< 1, PET agents expect

higher price rises than the ones they observe. As their beliefs are disappointed, they

become more pessimistic (ũt−1 + w̃t−1 < 0) and the bubble bursts.

37Notice that the last term in c̃t−1 − ct−1 > 0, as uninformed traders under-estimate the aggregate
risk bearing capacity following a displacement.
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B.4 Speculative Motives

To model speculative motives, we let agents have the following asset demand function

conditional on their beliefs:

Xi,t = Ei,t[Πt+1] − Pt

AVi,t[Πt+1]
(B.20)

where the expected next period payoff is given by:

Πt+1 ≡ βPt+1 + (1 − β)Dt (B.21)

and simply reflects that with probability β the asset is alive next period and worth Pt+1,

and with probability (1 − β) the asset dies and pays out its terminal dividend Dt.

Since agents are forecasting prices, which are endogenous outcomes, they now need

to forecast other agents’ future beliefs, which requires us to specify agents’ higher order

beliefs. While partial equilibrium thinking helps to pin down uninformed agents’ higher

order beliefs (they simply assume that all agents trade on their private information alone,

and that this is common knowledge), it allows for more flexibility about informed agents’

higher order beliefs.

We consider two cases. In Section B.4.1 we let informed agents be “PET-aware,” so

that they perfectly understand uninformed agents’ biased beliefs. In Section B.4.2, we

consider a case where informed agents are “PET-unaware” and mistakenly believe that all

other agents are rational, and that uninformed agents extract the right information from

prices. This lines up with the distinction in practical asset management between investors

who concentrate on the gap between market prices and their estimates of fundamentals,

and those who also think about behavioral biases in the market.
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B.4.1 “PET−aware” Speculation

In solving the model, we proceed in the same three steps we used in the baseline model.

First, we solve for the true price function which generates the prices agents observe.

Second, we specify the mapping that uninformed agents use to extract information from

prices. Third, we solve the model forward, starting from the steady state in normal times.

The one key difference to our baseline setup is that since all agents are now forecasting an

endogenous outcome, we now need to solve for the first two steps by backwards induction.

To do so, we use the new steady state after the uncertainty surrounding the displacement

has been resolved as our terminal point.

Step 1: True Market Clearing Price Function. To determine the true market

clearing condition which determines the prices agents observe, we know that in period t

all informed agent trade on the whole history of signals they have received up until that

date ({uj}t
j=0, {sj}t

j=1) and all uninformed agents trade on the information they have

learnt from past prices.

We define Dt ≡ D̄ +∑t
j=1 ut and Wt ≡ τ0

tτs+τ0
µ0 + τs

tτs+τ0

∑t
j=1 s̃t to be informed agents’

period t belief of normal times shocks and of the displacement respectively, and D̃t and

W̃t are uninformed agents’ beliefs about these quantities.

We can then guess that the true price function takes the following form:

Pt = At(Dt + Wt) + Bt(D̃t−1 + W̃t−1) − Kt (B.22)

where D̃t−1 + W̃t−1 is the information that uninformed agents extract from past prices,

and At, Bt and Kt are time-varying and deterministic coefficients.

To verify our guess, notice that if informed agents are aware of uninformed agents’
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bias, their beliefs about next period payoff are given by:

EI,t[Πt+1] = (1 − β + βAt+1) (Dt + Wt)︸ ︷︷ ︸
EI,t[D̃t+1+W̃t+1]

+βBt+1

(
Pt − B̃t(D̄ + µ0) + K̃t

Ãt

)
︸ ︷︷ ︸

EI,t[D̃t+W̃t]

−βKt+1

(B.23)

VI,t[Πt+1] =VI,t

[
βAt+1ut+1 + βAt+1

τs

(t + 1)τs + τ0
(ω + ϵt+1) + (1 − β)ω

]
(B.24)

= (βAt+1)2 σ2
u +

(
βAt+1

(
τs

(t + 1)τs + τ0

))2

(τs)−1

+
(

1 − β + βAt+1

(
τs

(t + 1)τs + τ0

))2

(tτs + τ0)−1 = VI,t

(B.25)

where the variance term captures how the uncertain components of expected profits in

equation B.21 are (i) the future dividend component ut+1 ; (ii) the signal informed agents

receive in period t + 1, st+1 = ω + ϵt+1; and (iii) the displacement shock ω.

Turning to uninformed agents’ beliefs:

EU,t[Πt+1] = (1 − β + βÃt+1)(D̃t−1 + W̃t−1) + βB̃t+1(D̄ + µ0) − βK̃t+1 (B.26)

VU,t[Πt+1] =VU,t

[
βÃt+1

(
ut+1 + ut + 2τs

(t + 1)τs + τ0
ω + τs

(t + 1)τs + τ0
(ϵt+1 + ϵt)

)
+ (1 − β)(ut + ω)

]

=(βÃt+1)2σ2
u + (1 − β + βÃt+1)2σ2

u

+
(

1 − β + βÃt+1
2τs

(t + 1)τs

)2

((t − 1)τs + τ0)−1

+ 2
(

τsβÃt+1

(t + 1)τs + τ0

)2

(τs)−1 = VU,t

(B.27)
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where the first equality captures that in period t uninformed traders are uncertain about

ut, ut+1, ϵt, ϵt+1 and ω, and the last equality simply simplifies notation to highlight that

VU,t is deterministic and time-varying.

Given these beliefs, the resulting market clearing price function is given by:

Pt =
(

ϕVU,t

ϕVU,t + (1 − ϕ)VI,t

)
EI,t[Πt+1]

+
(

(1 − ϕ)VI,t

ϕVU,t + (1 − ϕ)VI,t

)
EU,t[Πt+1]

− AZVI,tVU,t

ϕVU,t + (1 − ϕ)VI,t

(B.28)

Since (B.23), (B.25), (B.26) and (B.27) show that EI,t[Πt+1] is linear in (Dt + Wt) and

(D̃t−1 + W̃t−1), EU,t[Πt+1] is linear in (D̃t−1 + W̃t−1), and that V[Πt+1] and V[Πt+1] are

deterministic, we see that the true price function does indeed take the form in (B.22).

Substituting (B.23), (B.25), (B.26) and (B.27) into (B.28), and matching coefficients,

yields:

At =

 ϕ
VI,t

ϕ
VI,t

(
1 − β Bt+1

Ãt

)
+ (1−ϕ)

VU,t

 (1 − β + βAt+1) (B.29)

Bt =

 1−ϕ
VU,t

ϕ
VI,t

(
1 − β Bt+1

Ãt

)
+ (1−ϕ)

VU,t

 (1 − β + βÃt+1) (B.30)

Kt =

 ϕ
VI,t

ϕ
VI,t

(
1 − β Bt+1

Ãt

)
+ (1−ϕ)

VU,t

(βKt+1 + β
Bt+1

Ãt

(
−B̃t(D̄ + µ0) + K̃t

))

+

 1−ϕ
VU,t

ϕ
VI,t

(
1 − β Bt+1

Ãt

)
+ (1−ϕ)

VU,t

(−βB̃t+1(D̄ + µ0) + βK̃t+1
)
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+ AZ
ϕ

VI,t

(
1 − β Bt+1

Ãt

)
+ (1−ϕ)

VU,t

(B.31)

These expressions give recursive equations for the coefficients which determine equi-

librium prices at each point in time. To solve for this mapping, we then need to solve the

model by backward induction. We can do this by using the new steady state after the

uncertainty generated by the displacement is resolved as the end point. Specifically, the

new steady state is given by:

A′ =

 ϕ
V′

I

ϕ
V′

I

(
1 − β B′

Ã′

)
+ 1−ϕ

V′
U

 (1 − β + βA′) (B.32)

B′ =

 1−ϕ
V′

U

ϕ
V′

I

(
1 − β B′

Ã′

)
+ 1−ϕ

V′
U

 (1 − β + βÃ′) (B.33)

K ′ =

 ϕ
V′

I

ϕ
V′

I

(
1 − β B′

Ã′

)
+ 1−ϕ

V′
U

(βK ′ + β
B′

Ã′

(
−B̃′(D̄ + µ0) + K̃ ′

))

+

 1−ϕ
V′

U

ϕ
V′

I

(
1 − β B′

Ã′

)
+ 1−ϕ

V′
U

(−βB̃′(D̄ + µ0) + βK̃ ′
)

+ AZ
ϕ
V′

I

(
1 − β B′

Ã′

)
+ 1−ϕ

V′
U

(B.34)

where Ã′, B̃′ and K̃ ′ are the coefficients of the mapping PET agents use to extract

information from prices in the new steady state, and which we solve for in (B.46), (B.47)

and (B.48) in the next section respectively. Moreover, V′
I and V′

U are the variances of

informed and uninformed agents in the new steady state when uncertainty is resolved:

V′
I = lim

t→∞
VI,t = (βA′)2σ2

u (B.35)
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V′
U = lim

t→∞
VU,t = (βÃ′)2σ2

u + (1 − β + βÃ′)2σ2
u (B.36)

Using this steady state as our end point, we can then solve for the true price function

which generates the prices agents observe by backward induction.

Step 2: Mapping to Infer Information from Prices. As in the baseline model

without speculation, PET agents think that in period t informed agents trade on the

information they received, {uj}t
j=1, {sj}t

j=1, and that uninformed agents only trade on

their prior beliefs. Therefore, we can guess that their perceived equilibrium price function

takes the following form:

Pt = Ãt(D̃t + W̃t) + B̃t(D̄ + µ0) − K̃t (B.37)

where Ãt, B̃t and K̃t are time-varying and deterministic coefficients.

To verify that this is the price function which would arise in equilibrium if agents

traded on their own private information alone, notice that, given this price function,

informed agents’ beliefs would take the following form:

ẼI,t[Πt+1] =ẼI,t[β
(
Ãt+1(D̃t+1 + W̃t+1) + B̃t+1(D̄ + µ0) − K̃t+1

)
+ (1 − β)(D̃t + ω̃)]

=(1 − β + βÃt+1)(D̃t + W̃t) + βB̃t+1(D̄ + µ0) − βK̃t+1 (B.38)

ṼI,t[Πt+1] =ṼI,t

[
βÃt+1ũt+1 + βÃt+1

(
τs

(t + 1)τs + τ0

)
(ω̃ + ϵ̃t+1) + (1 − β)ω̃

]

=
(
βÃt+1

)2
σ2

u +
(

βÃt+1

(
τs

(t + 1)τs + τ0

))2

(τs)−1

+
(

1 − β + βÃt+1

(
τs

(t + 1)τs + τ0

))2

(tτs + τ0)−1 = ṼI,t (B.39)

where ṼI,t is time-varying and deterministic. Turning to PET agents’ beliefs of other
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uninformed agents’ beliefs:

ẼU,t[Πt+1] = (1 − β + βÃt+1 + βB̃t+1)(D̄ + µ0) − βK̃t+1 (B.40)

ṼU,t[Πt+1] =ṼI,t

[
βÃt+1(ũt+1 + ũt) + βÃt+1

(
τs

(t + 1)τs + τ0

)
(2ω̃ + ϵ̃t + ϵ̃t+1) + (1 − β)(ũt + ω̃)

]

=
(
βÃt+1

)2
σ2

u +
(
1 − β + βÃt+1

)2
σ2

u + 2
(

βÃt+1

(
τs

(t + 1)τs + τ0

))2

(τs)−1

+
(

1 − β + 2βÃt+1

(
τs

(t + 1)τs + τ0

))2

(τ0)−1 = ṼU,t (B.41)

where VU,t is time-varying and deterministic.38

Given these beliefs, the resulting market clearing price function is given by:

Pt =
(

ϕṼU,t

ϕṼU,t + (1 − ϕ)ṼI,t

)
ẼI,t[Πt+1]

+
(

(1 − ϕ)ṼI,t

ϕṼU,t + (1 − ϕ)ṼI,t

)
ẼU,t[Πt+1]

− AZṼI,tṼU,t

ϕṼU,t + (1 − ϕ)ṼI,t

(B.42)

Since (B.38), (B.39), (B.40) and (B.41) show that ẼI,t[Πt+1] is linear in (D̃t + W̃t) and

(D̄ + µ0), that ẼU,t[Πt+1] is linear in (D̄ + µ0) and that ṼI,t+1[Πt+1] and ṼU,t+1[Πt+1] are

deterministic, we see that given PET agents’ beliefs about other agents, the price function

which generates the prices they observe does indeed take the form in (B.37). Substituting

38In solving the model we assume that partial equilibrium thinkers believe other uninformed traders
think past fundamental shocks simply did not realize - since they did not receive private information
about them, they think they did not happen. Our results are robust to alternative assumptions about
traders’ higher order beliefs. For example, we could just as easily have assumed that PET traders believe
that other uninformed traders think no news ever arrives, and having them trade on fixed prior beliefs
even following a displacement.
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(B.38), (B.39), (B.40) and (B.41) into (B.42), and matching coefficients yields:

Ãt =
 ϕ

ṼI,t

ϕ
ṼI,t

+ 1−ϕ
ṼU,t

 (1 − β + βÃt+1) (B.43)

B̃t =
 ϕ

ṼI,t

ϕ
ṼI,t

+ 1−ϕ
ṼU,t

 βB̃t+1 +
 1−ϕ

ṼU,t

ϕ
ṼI,t

+ 1−ϕ
ṼU,t

 (1 − β + βÃt+1 + βB̃t+1) (B.44)

K̃t =
 ϕ

ṼI,t

ϕ
ṼI,t

+ 1−ϕ
ṼU,t

 βK̃t+1 +
 1−ϕ

ṼU,t

ϕ
ṼI,t

+ 1−ϕ
ṼU,t

 βK̃t+1 − AZ
ϕ

ṼI,t
+ 1−ϕ

ṼU,t

(B.45)

These expressions give recursive equations for the coefficients with determine equilib-

rium prices at each point in time. Therefore, to solve for this mapping, we need to solve

the model by backward induction. We can do this by using the new steady state after the

uncertainty generated by the displacement is resolved. Specifically, uninformed agents

think that the new steady state has:

Ã′ =
 ϕ

Ṽ′
I

ϕ
Ṽ′

I

+ 1−ϕ
Ṽ′

U

 (1 − β + βÃ′) (B.46)

B̃′ =
 ϕ

Ṽ′
I

ϕ
Ṽ′

I

+ 1−ϕ
Ṽ′

U

 βB̃′ +
 1−ϕ

Ṽ′
U

ϕ
Ṽ′

I

+ 1−ϕ
Ṽ′

U

 (1 − β + βÃ′ + βB̃′) (B.47)

K̃ ′ =
 ϕ

Ṽ′
I

ϕ
Ṽ′

I

+ 1−ϕ
Ṽ′

U

 βK̃ ′ +
 1−ϕ

Ṽ′
U

ϕ
Ṽ′

I

+ 1−ϕ
Ṽ′

U

 βK̃ − AZ
ϕ
Ṽ′

I

+ 1−ϕ
Ṽ′

U

(B.48)

where Ã′, B̃′ and K̃ ′ are PET agents’ beliefs of the coefficients of the price function in the

new steady state after the uncertainty associated with the displacement is resolved, and

Ṽ′
I and Ṽ′

U are PET agents’ beliefs of the variance of informed and uninformed agents in

the new steady state when uncertainty is resolved:

Ṽ ′
I = lim

t→∞
ṼI,t = (βÃ)2σ2

u (B.49)
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Ṽ ′
U = lim

t→∞
ṼU,t = (βÃ)2σ2

u + (1 − β + βÃ)2σ2
u + (1 − β)2(τ0)−1 (B.50)

Using this steady state as our end point, we can then solve for the mapping uninformed

agents use to extract information from prices by backward induction.

Given this mapping, uninformed agents extract the following information from prices:

D̃t−1 + W̃t−1 = Pt−1 − B̃t−1(D̄ + µ0) + K̃t−1

Ãt−1
(B.51)

Or, given their information set in period t, they extract the following new information

from the unexpected price change they observe in period t − 1:

ũt−1 + w̃t−1 = 1
Ãt−1

(Pt−1 − EU,t−1[Pt−1]) (B.52)

where w̃t−1 = W̃t−1−W̃t−2. This verifies our claim in the text that PET agents extrapolate

unexpected price changes even when we allow for speculative motives.

Step 3: Solving the Model Recursively. We solve for the normal times steady state

before the displacement is announced by solving the system of equations in (B.46), (B.47),

(B.48) and (B.32), (B.33), (B.34), using the following normal times variances:

ṼI =(βÃ)2σ2
u (B.53)

ṼU =(βÃ)2σ2
u + (1 − β + βÃ)2σ2

u (B.54)

VI =(βA)2σ2
u (B.55)

VU =(βÃ)2σ2
u + (1 − β + βÃ)2σ2

u (B.56)

Starting from the normal times steady state, we can then simulate the equilibrium

path of our economy forward for a given set of signals.
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B.4.2 “PET−unaware” Speculation - Mistakenly Rational

If informed agents are not omniscient, and instead mistakenly believe that the world is

rational, and that uninformed agents are able to recover the correct information form

prices, then their posterior beliefs in (B.23) should be replaced by:

EI,t[Πt+1] = (1 − β + βAt+1)(Dt + Wt) + βBt+1(Dt + Wt) − βKt+1 (B.57)

The posterior variance is identical since, as in the “PET−aware” case, Informed agents

are certain about the beliefs that Uninformed agents will have next period.

Following the same steps as in Section B.4.1 above, it follows that the equilibrium

price becomes:

Pt = At(Dt + Wt) + Bt(D̃t−1 + W̃t−1) − Kt (B.58)

where:

At =
 ϕ

VI,t

ϕ
VI,t

+ 1−ϕ
VU,t

 (1 − β + βAt+1 + βBt+1) (B.59)

Bt =
 1−ϕ

VU,t

ϕ
VI,t

+ 1−ϕ
VU,t

 (1 − β + βÃt+1) (B.60)

Kt =
 ϕ

VI,t

ϕ
VI,t

+ 1−ϕ
VU,t

 βKt+1 +
 1−ϕ

VU,t

ϕ
VI,t

+ 1−ϕ
VU,t

(−βB̃t+1(D̄ + µ0) + K̃t+1
)

+ AZ
ϕ

VI,t
+ 1−ϕ

VU,t

(B.61)

Since the mapping used by PET agents to extract information from prices is unchanged

relative to the one in Section B.4.1, we can use this alternative price function to simulate

the path of equilibrium prices and beliefs by following the same steps as in Section B.4.1.

The results of these simulation for prices, beliefs, trading volume and asset demand are

presented in Figure 5.
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Figure 5: Bubbles and crashes with “PET-aware” and “PET-unaware” speculators. Start-
ing from a normal times steady state, a displacement ω ∼ N(µ0, τ−1

0 ) is announced in period t = 0.
Informed agents then receive a signal st = ω + ϵt in each period, where ϵ1 > 0 and ϵt = 0 ∀t > 1.
This figure compares the path of equilibrium prices and trading volume under rational expectations,
partial equilibrium thinking, “PET-aware” speculation, and “PET-unaware” speculation. “PET-aware”
speculation amplifies the bubble relative to the case with no speculative motives, while “PET-unaware”
speculation arbitrages the bubble away.
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C Partially Revealing Prices

When prices are fully revealing, the extrapolation parameter used by PET agents is

decreasing in informed agents’ informational edge. In this section, we study how the

extrapolation parameter changes if we allow for noise, so that prices are no longer fully

revealing.

C.0.1 Stochastic Supply and Information Structure

To consider the effect of noise on PET agents’ inference problem, we assume that the

supply of the risky asset is stochastic, and given by zt
iid∼ N(Z, σ2

z). To illustrate the effect

of noise in the simplest possible way, we assume that agents learn the realization of the

supply of the risky asset after two periods. In each period t, all agents are uncertain

about zt−j
iid∼ N(Z, σ2

z) for j ≤ 1 and they know the realization of zt−h for h ≥ 2. Even
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though one period lagged prices are partially revealing, this assumption makes prices fully

revealing at further lags, thus simplifying PET agents’ inference.

C.0.2 Inference Problem with Noise

When prices are fully revealing, uninformed agents think they can extract from prices the

exact information that informed agents received in the previous period. This is no longer

true when prices are partially revealing, as uninformed agents can only infer a noisy signal

of fundamentals from prices. Specifically, in normal times, uninformed agents think that

prices take the following form:

Pt−1 = ã
(
ẼI,t−2[DT ] + ũt−1

)
+ b̃D̄ − c̃zt−1 (C.1)

where ã = ϕτ̃I

ϕτ̃I+(1−ϕ)τ̃U
, b̃ = (1−ϕ)τ̃U

ϕτ̃I+(1−ϕ)τ̃U
and c̃ = A

ϕτ̃I+(1−ϕ)τ̃U
. Since prices are fully revealing

in period t − 2, but they are partially revealing in period t − 1, uninformed agents extract

the following noisy signal from prices:39

Pt−1 − ãD̃t−2 − b̃D̄ + c̃Z

ã
= ũt−1 − c̃

ã
(zt−1 − Z) (C.2)

and we can re-write this more simply as:

(1
ã

)
(Pt−1 − Et−1[Pt−1]) = ũt−1 − c̃

ã
(zt−1 − Z) (C.3)

This shows that uninformed agents are now uncertain as to whether the unexpected price

change they observe is due to new information, or to changes in the stochastic supply of

the risky asset. Either way, PET agents still extrapolate past prices to recover a (noisy)

signal from them.

39The assumption that prices are fully revealing in period t − 2 means that uninformed agents think
they know the exact value of ẼI,t−2[DT ] = D̃t−2, as opposed to being uncertain about it.
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Given the noisy information that uninformed agents extract from prices, their beliefs

in period t are given by:

EU,t[DT ] = D̃t−2 +

 σ2
u

σ2
u +

(
c̃
ã

)2
σ2

z

(1
ã

)
(Pt−1 − EU,t−1[Pt−1]) (C.4)

= D̃t−2 + κ

ã
(Pt−1 − EU,t−1[Pt−1]) (C.5)

where κ =
(

σ2
u

σ2
u+( c̃

ã)2
σ2

z

)
≤ 1 is the weight that PET agents put on the noisy signal they

extract from past prices. This shows that the extrapolation parameter θ now depends on

two components:

θ ≡ κ

ã
=

 σ2
u

σ2
u +

(
1

ϕτ̃I

)2
σ2

z


︸ ︷︷ ︸

weight

(
1 +

(
1 − ϕ

ϕ

)
τ̃U

τ̃I

)
︸ ︷︷ ︸

inference

(C.6)

where (τ̃U)−1 =
(

1
1−β2

)
σ2

u = (τ̃I)−1 +σ2
u and (τ̃I)−1 =

(
β2

1−β2

)
σ2

u. Starting from the second

component in (C.6), 1/̃a is the extrapolation parameter that would prevail if σ2
z = 0 and

prices were fully revealing: the more sensitive prices are to shocks, the less strongly do

PET agents need to extrapolate unexpected price changes to recover the (in their mind

unbiased) noisy signal ũt−1 − c̃
ã
(zt−1 − Z) from prices. Turning to the first component

in (C.6), κ ≤ 1 is the weight that PET agents put on the information they extract from

prices when forming their posterior beliefs. Whenever σ2
z > 0, κ < 1, and PET agents

extrapolate prices less strongly than when prices are fully revealing, and this simply

reflects the noisy nature of the signal they are able to infer from prices.

To draw comparative statics, we can substitute the expressions for τ̃I and τ̃U into
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(C.6), and re-write the extrapolation parameter in terms of the primitives of the model:

θ = κ

ã
=

 1
1 +

(
1
ϕ

)2 ( β2

1−β2

)2
σ2

uσ2
z


︸ ︷︷ ︸

weight

(
1 +

(
1 − ϕ

ϕ

)
β2
)

︸ ︷︷ ︸
inference

(C.7)

From this expression, we see that the extrapolation parameter is decreasing in all sources

of noise (σ2
u and σ2

z), as this reduces the informativeness of the signal uninformed agents

extract from prices.

On the other hand, increasing the perceived information advantage (1/β2) and the

fraction of informed agents in the market (ϕ) both have two competing roles. Increasing
1/β2 (or ϕ) decreases the fully revealing extrapolation parameter 1/̃a as prices are more

sensitive to news, but it also increases the weight κ, as prices are a more informative signal.

For small enough noise, the first effect dominates, and the extrapolation parameter is

decreasing in the informational edge, and in the fraction of informed agents in the market.

On the other hand, if there is too much noise in prices, the second effect dominates and

the comparative statics are reversed.40

D Dynamic Trading

D.1 Setup

In this section we consider the case where informed traders solve the full inter-temporal

maximization problem, where they maximize CARA utility over terminal wealth. To do

so, we make our setup as close as possible to He and Wang (1995). Our traders solve a

portfolio choice problem between a risky and a riskless asset. The riskless asset is in fixed

40Notice that it is a more general property of learning models that the effects of learning are dampened
when noise is greater. Therefore, in this section we see that in circumstances where learning is relevant,
the comparative statics described in the main text still hold.
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elastic supply, and we let the risk-free rate be zero. The risky asset is in fixed supply

Z, and pays off a terminal dividend of v in period T + 1. Turning to the information

structure, a fraction ϕ of traders are informed, and receive a signal st = v + ϵt with

ϵt ∼iid N(0, σ2
ϵ ). The remaining fraction 1 − ϕ of traders are instead uninformed, and

learn information from past prices while engaging in partial equilibrium thinking.

In what follows, we solve the model in two ways. First, we solve the model by assum-

ing that all traders have mean-variance utility over the fundamental value of the asset.

Second, we consider the case where informed traders are sophisticated, and solve the full

intertemporal maximization problem while also perfectly understanding other traders’

objective function and beliefs.41

D.2 Mean-variance Utility

As a benchmark, we consider the case where all traders have mean-variance utility:

max
Xi,t

{
Xi,t (Ei,t[v] − Pt) − 1

2AX2
i,tVi,t[v]

}
(D.1)

where A is the coefficient of absolute risk aversion. Traders’ asset demand functions are

given by:

Xi,t = Ei,t[v] − Pt

AVi,t[v] (D.2)

As in the baseline framework, we first solve for the true price function, given agents’

beliefs. Next, we solve for the price function which uninformed traders think is generating

the price change they observe, both for the rational and for the PET case. Finally, we

solve for equilibrium outcomes.

41We continue to assume that uninformed traders have mean-variance utility over the fundamental
value of the asset, and believe that all other traders have mean-variance utility too. This assumption can
easily be relaxed, and we maintain it here for simplicity.
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D.2.1 True Price Function

Given the information structure, market clearing leads to the following price function:

Pt = ϕτI,t

ϕτI,t + (1 − ϕ)τU,t

EI,t[v] + (1 − ϕ)τU,t

ϕτI,t + (1 − ϕ)τU,t

EU,t[v] − AZ

ϕτI,t + (1 − ϕ)τU,t

(D.3)

where τI,t = tτs + τ0, τU,t = (t − 1)τs + τ0, EI,t[v] = τs

tτs+τ0

∑t
i=1 si + τ0

tτs+τ0
µ0, and EU,t[v]

depends on the mapping uninformed traders use to extract information from prices, which

we turn to next.

Before we do so, notice that we can re-write the true price function more succinctly

as:

Pt = AtEI,t[v] + BtEU,t[v] − Kt (D.4)

where At ≡ ϕτI,t

ϕτI,t+(1−ϕ)τU,t
, Bt ≡ (1−ϕ)τU,t

ϕτI,t+(1−ϕ)τU,t
µ0 and Kt ≡ AZ

ϕτI,t+(1−ϕ)τU,t
.

D.2.2 Rational Mapping Used to Infer Information from Prices

When uninformed traders have rational expectations, and learn information from past

prices, they are able to infer the right information, such that:

EU,t[v] = ẼI,t−1[v] = EI,t−1[v] (D.5)

D.2.3 PET Mapping Used to Infer Information from Prices

To understand what information uninformed traders infer from prices under partial equi-

librium thinking, we need to pin down uninformed traders’ beliefs of what generates the

price changes they observe. Specifically, PET uninformed traders think that prices evolve

as follows:

Pt = ϕτ̃I,t

ϕτ̃I,t + (1 − ϕ)τ̃U,t

ẼI,t[v] + (1 − ϕ)τ̃U,t

ϕτ̃I,t + (1 − ϕ)τ̃U,t

µ0 − AZ

ϕτ̃I,t + (1 − ϕ)τ̃U,t

(D.6)
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where τ̃I,t = tτs + τ0 and τ̃U,t = τ0. We can write this more succinctly as:

Pt = ÃtẼI,t[v] − K̃t (D.7)

where Ãt ≡ ϕτ̃I,t

ϕτ̃I,t+(1−ϕ)τ̃U,t
, K̃t ≡ − (1−ϕ)τ̃U,t

ϕτ̃I,t+(1−ϕ)τ̃U,t
µ0 + AZ

ϕτ̃I,t+(1−ϕ)τ̃U,t
. Uninformed traders

then invert this mapping to infer informed traders’ previous period beliefs, which in turn

pin down their own beliefs in period t:

EU,t[v] = ẼI,t−1[v] = 1
Ãt−1

Pt−1 + K̃t−1

Ãt−1
(D.8)

D.2.4 Results

Figure 6 plots the equilibrium price in normal times (left panel) and following a displace-

ment (right panel) for both the rational (red line) and PET (blue line) case. We use these

as benchmarks against which we can interpret the effects of adding intertemporal trading

motives, which we turn to next.

D.3 Intertemporal Problem

In this section, we consider the case where informed traders have CARA utility over

terminal wealth and perfectly understand how uninformed traders form their beliefs and

trade. Moreover, we assume that uninformed traders still engage in mean-variance utility,

and have the same demand function as in (D.8).42

We follow He and Wang (1995) as closely as possible in solving informed traders’

maximization problem, and adapt their method to allow uninformed traders to engage in

partial equilibrium thinking.

42We choose this set of assumptions because ultimately we want to understand whether allowing
informed traders to have intertemporal trading motives would lead them to arbitrage the bubble away.
Alternative assumptions, with greater sophistication on the part of uninformed traders, can also be
accommodated.

73

Electronic copy available at: https://ssrn.com/abstract=4666338



We start by guessing that the price function is a linear function of traders’ beliefs:

Pt = AtEI,t[v] + BtEU,t[v] − Kt = AP,tΨt (D.9)

where AP,t ≡
(

−Kt At Bt

)
, and Ψt ≡

(
1 EI,t[v] EU,t[v]

)′
is our state vector. Second,

we guess that the value function takes the following form:

J(WI,t; Ψt; t) = EI,t

[
−e−AWI,T

]
= −e−AWt− 1

2 Ψ′
tUtΨt (D.10)

To solve for the equilibrium price function, we first need to show that Ψt+1 and Qt+1 ≡

Pt+1 − Pt are Gaussian processes. Second, we can use CARA normal results to simplify

informed traders’ maximization problem given the guessed value function form at t + 1,

and find informed traders’ demand function. Using the derived demand function we

can then also verify by recursion that the value function takes the postulated form at t.

Third, we write down uninformed traders’ demand function. Fourth, we impose market

clearing, and match coefficients to define AP,t recursively. Fifth, we solve the problem

for period T , in order to start the recursion which allows us to compute the coefficients

of the equilibrium price function, backwards. Finally, starting from a steady state with

homogeneous beliefs (EI,0[v] = EU,0[v] = µ0) in period t = 0, we simulate the model

forwards.

D.3.1 Gaussian State Vector

To show that the state vector follows a Gaussian process, let’s first see how each element

evolves:

EI,t+1[v] = tτs + τ0

(t + 1)τs + τ0
EI,t[v] + τs

(t + 1)τs + τ0
st+1 (D.11)

= EI,t[v] + τs

(t + 1)τs + τ0
σst+1|txt+1 (D.12)
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where the second equality uses the fact that st+1 = EI,t[v] + ϵt+1 + (v −EI,t[v]), such that

xt+1 ≡ ϵt+1+(v−EI,t[v])
σt+1|t

∼ N(0, 1) and σt+1|t ≡ (τs)−1 + (tτs + τ0)−1.

Turning to uninformed traders’ beliefs, we assume uninformed traders form their be-

liefs according to (D.8) (and we also assume that informed traders are sophisticated and

understand that this is how uninformed traders form beliefs):

EU,t+1[v] = 1
Ã

Pt + K̃t

Ãt

(D.13)

= At

Ãt

EI,t + Bt

Ãt

EU,t[v] − Kt − K̃t

Ãt

(D.14)

where the second equality uses our guess for the price function in (D.9).

We can now use (D.12) and (D.14) to write the evolution of the state vector as follows:

Ψt+1 = AΨ,t+1Ψt + BΨ,t+1xt+1 (D.15)

where AΨ,t+1 ≡


1 0 0

0 1 0
K̃t−Kt

Ãt

At

Ãt

Bt

Ãt

 and BΨ,t+1 ≡


0

τs

(t+1)τs+τ0
σst+1|t

0

.

Moreover, using the definition of Qt+1, and substituting in it our guessed price function

in (D.9) and the law of motion of the state vector in (D.15), we have that:

Qt+1 = AQ,t+1Ψt + BQ,t+1xt+1 (D.16)

where AQ,t+1 ≡ AP,t+1AΨ,t+1 − AP,t and BQ,t+1 ≡ AP,t+1BΨ,t+1.

Since both Ψt+1 and Qt+1 are Gaussian processes given agents’ beliefs and our guessed

price function, we can now apply Lemma 4 in He and Wang (1995) to show that informed

traders have linear demand functions.
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D.3.2 Informed Traders’ Demand Function

Informed traders solve the following intertemporal optimization problem, according to

which they maximize CARA utility over terminal wealth:

max
XI,t

EI,t

[
−e−AWI,T

]
s.t. WI,t+1 = WI,t + XI,tQt+1 (D.17)

where WI,T is the wealth of (a single) informed trader at the final date T , and Qt+1 ≡

Pt+1 − Pt is the excess return on one share of the risky asset. Following He and Wang

(1995), let J(Wt; Ψt; t) be the value function. The Bellman equation for the optimization

problem in (D.17) is given by:

0 = max
XI,t

{EI,t [J(WI,t+1; Ψt+1; t + 1] − J(WI,t; Ψt; t)} (D.18)

s.t. WI,t+1 = WI,t + XI,tQt+1 (D.19)

J(WI,T ; ΨT ; T ) = −e−λWI,T (D.20)

Since we saw in (D.15) and (D.16) that Ψt+1 and Qt+1 are Gaussian processes, we can

directly apply Lemma 4 from He and Wang (1995), given our guessed value function in

(D.10). We can then show that informed traders have the following linear asset demand

function:

XI,t = 1
A

FtΨt (D.21)

where:

Ft ≡ (BQ,t+1Ξt+1B
′
Q,t+1)−1

(
AQ,t+1 − BQ,t+1Ξt+1B

′
Ψ,t+1U

′
t+1AΨ,t+1

)
(D.22)

Ξt+1 ≡
(
1 + B′

Ψ,t+1Ut+1BΨ,t+1
)−1

(D.23)

Plugging this demand function into the value function also allows us to verify that the
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value function at t is of the postulated form:

J(WI,t; Ψt; t) = −e−AWt− 1
2 Ψ′

tUtΨt (D.24)

with:

Ut = Mt + ctI
3,3
11 (D.25)

Mt ≡ F ′
t

(
BQ,t+1Ξt+1B

′
Q,t+1

)
Ft

−
(
B′

Ψ,t+1Ut+1AΨ,t+1
)′

Ξt+1
(
B′

Ψ,t+1Ut+1AΨ,t+1
)

+ A′
Ψ,t+1Ut+1AΨ,t+1 (D.26)

where ct ≡ −2 ln ρt+1, ρt+1 ≡
√

|Ξt+1|, and I3,3
11 is a (3×3) index matrix which has all the

elements being zero except element {11} being 1.43

Notice that (D.21) is then a function of AP,t (since AQ,t+1 and AΨ,t+1 are both functions

of AP,t), which is the coefficient governing the price function at t. To determine these

price function coefficients, we need to compute the demand function of uninformed traders,

impose market clearing, and then match coefficients, given our guess in (D.9).

D.3.3 Uninformed Traders’ Demand Function

The demand of uninformed traders is:

XU,t = EU,t[v] − Pt

A((t − 1)τs + τ0)−1 (D.27)

43This adjustment is because the value function is multiplied by the constant ρt+1, independent of
beliefs, which is equivalent to having the state vector multiplied by such a matrix since the first element
of the state vector is just the constant 1.
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Define the precision of uninformed agents as τU,t = (t − 1)τs + τ0, so that in matrix form:

XU,t = 1
A

τU,t

((
0 0 1

)
− AP,t

)
Ψt = 1

A
DtΨt (D.28)

where Dt ≡ τU,t

((
0 0 1

)
− AP,t

)
.

D.3.4 Market Clearing and Matching Coefficients

Aggregating demands and imposing market clearing, we get:

Z =
(

ϕ

A
Ft + 1 − ϕ

A
Dt

)
Ψt (D.29)

Since the left-hand side is a constant (Z is independent of EU,t[v] and EI,t[v], the second

and third entries of Ψt), the matrix in front of Ψt on the right-hand side must be equal

to:
ϕ

A
Ft + 1 − ϕ

A
Dt =

(
Z 0 0

)
(D.30)

To isolate the unknown term AP,t, we can decompose AΨ,t+1, Ft and Dt in terms that

include AP,t and terms that do not. Specifically, let:

A1Ψ,t+1 ≡


t+gt

t+1 0 (1−gt)µ0
t+1

0 0 −K̃t

Ãt

0 0 1

 and A2Ψ,t+1 ≡


0
1

Ãt

0

 (D.31)

we can then write:

AΨ,t+1 = A1Ψ,t+1AP,t + A2Ψ,t+1 (D.32)

Ft = F1,tAP,t + F2,t (D.33)
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Dt = D1,tAP,t + D2,t (D.34)

where:

F1,t ≡ (BQ,t+1Ξt+1B
′
Q,t+1)−1

(
AP,t+1A1Ψ,t+1 − 1 − BQ,t+1Ξt+1B

′
Ψ,t+1Ut+1A1Ψ,t+1

)
(D.35)

F2,t ≡ (BQ,t+1Ξt+1B
′
Q,t+1)−1

(
AP,t+1A2Ψ,t+1 − BQ,t+1Ξt+1B

′
Ψ,t+1Ut+1A2Ψ,t+1

)
(D.36)

D1,t ≡ −τU,t (D.37)

D2,t ≡ τU,t

(
0 0 1

)
(D.38)

The method of matching coefficients thus allows us to define AP,t recursively:

ϕ

A
(F1,tAP,t + F2,t) + 1 − ϕ

A
(D1,tAP,t + D2,t) =

(
Z 0 0

)
(D.39)

and since ϕF1,t +(1−ϕ)D1,t is a scalar, we can solve for the price function AP,t recursively

as:

AP,t = 1
ϕF1,t + (1 − ϕ)D1,t

((
AZ 0 0

)
− (ϕF2,t + (1 − ϕ)D2,t)

)
(D.40)

D.3.5 Starting the Recursion

We need to initialize the recursion at T by providing expressions for:

1. The elements of the matrix in price function, AP,T =
(

AT BT −KT

)
2. The matrix UT

Price Function in Period T. The price function is easy to get since there are no

dynamic/speculation motives anymore in period T . Market clearing then yields:

ϕ(Tτs + τ0)
EI,t[v] − PT

A
+ (1 − ϕ)((T − 1)τs + τ0)

EU,t[v] − PT

A
= Z (D.41)
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Which gives:

AT = ϕ(Tτs + τ0)
ϕ(Tτs + τ0) + (1 − ϕ)((T − 1)τs + τ0)

(D.42)

BT = (1 − ϕ)((T − 1)τs + τ0)
ϕ(Tτs + τ0) + (1 − ϕ)((T − 1)τs + τ0)

(D.43)

KT = AZ

ϕ(Tτs + τ0) + (1 − ϕ)((T − 1)τs + τ0)
(D.44)

Matrix UT . To find UT , notice that the expected value function of informed traders in

period T is simply given by (since UT +1 = 0, as there are no more intertemporal trading

motives in the final period):

EI,T exp (−AWT +1) = EI,t exp (−A[WT + XI,T (v − PT )]) (D.45)

where only v is stochastic, and follows a normal distribution: v ∼ N
(
EI,T [v], 1

T τs+τ0

)
. So

this is simply equal to:

EI,T exp (−AWT +1) = exp (−A[WT − XI,T PT ])ET exp (−AXI,T v) (D.46)

= exp (−A[WT − XI,T PT ]) exp
(

−AXI,TEI,T [v] + 1
2

A2X2
I,T

Tτs + τ0

)
(D.47)

For conciseness let IEI ≡
(

0 1 0
)

, so that the demand function can be written as:

XI,T = 1
A

FT ΨT where FT = (Tτs + τ0) (IEI − AP,T ) (D.48)

and the various components in (D.47) can be written as:

AXI,T PT = FT ΨT AP,T ΨT = 1
A

Ψ′
T F ′

T AP,T ΨT (D.49)
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AXI,TEI,T [v] = Ψ′
T F ′

T IEIΨT (D.50)
1
2

A2X2
I,T

Tτs + τ0
= 1

2(Tτs + τ0)
Ψ′

T F ′
T FT ΨT (D.51)

Substitututing (D.49), (D.50) and (D.51) into (D.47), we have:

ET exp
(

−AWT − 1
2Ψ′

T UT ΨT

)
(D.52)

where the first iteration of the U matrix is pinned down as follows:

UT = −2F ′
T

(
AP,T − ET,I + 1

2(Tτs + τ0)
FT

)
(D.53)

which concludes the recursion.

D.3.6 Numerical Solution

To simulate a price path for the intertemporal problem, we proceed as follows:

1. For each t, construct the misspecified model of the world used by Uninformed traders

according to equation (D.7), in order to recover Ãt, K̃t;

2. Construct the matrices AP,T and UT that initiate the recursion according to equa-

tions (D.42), (D.43), (D.44) and (D.53);

3. Recursively construct AP,t and Ut for each t by backward induction;

4. Starting from a steady state with EI,0[v] = EU,0[v], feed a path for signals {st} and

construct the price path forwards.
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D.4 Results

The top panel of Figure 6 compares the equilibrium price path with intertemporal trading

motives achieved in this way (green line) to the price path which arises when all traders

have period-by-period mean-variance utility and uninformed traders are either rational

(red line) or partial equilibrium thinkers (blue line). The left panel depicts equilibrium

prices in normal times, as shown from the fact that the corresponding strength of the

feedback effect (depicted in the bottom left panel) is always below one. The right panel

depicts equilibrium prices following a displacement, as shown from the fact that the corre-

sponding strength of the feedback effect (depicted in the bottom right panel) temporarily

increases above one.44

Figure 6 shows that in normal times dynamic trading motives lead informed traders

to arbitrage the short-term mispricing away more quickly, than when traders are myopic.

Instead, following a displacement, dynamic trading motives amplify the bubble. These

results are consistent with the intuition we uncovered in Section 3, where traders had

speculative motives. To understand why this is the case, notice that when informed

traders have dynamic trading motives, they understand that a higher price today leads

uninformed traders to have more optimistic beliefs tomorrow, thus pushing up potential

capital gains from holding the asset today. This leads to a higher ΨtUtΨt in the value

function. As a result, informed trader’s marginal utility of present wealth is lower, which

makes it attractive for them to buy the asset (and which effectively makes their asset

demand more inelastic), pushing up the price further, and making speculation even more

attractive. This generate a two-way feedback effect between prices and expected capital

gains, which amplifies the two-way feedback effect between prices and uninformed traders’

beliefs inherent in partial equilibrium thinking.

44As in the baseline model, the strength of the feedback effect is stronger when there are fewer informed
traders in the market, and when the informativeness of news is low relative to the prior.
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Figure 6: Bubbles and crashes with intertemporal trading. The left panel simulates price paths
and the corresponding feedback effect after normal times shock, when the feedback effect stays below
1 throughout. The right panel simulates the price path and the corresponding feedback effect after a
displacement shock, when the strength of the feedback effect temporarily increases above 1. The green
lines plot equilibrium prices when informed traders have intertemporal trading motives, while the blue
and red lines plot equilibrium price paths when all traders have period-by-period mean variance utility,
under partial equilibrium thinking and under rational expectations respectively.
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(c) Feedback effect after normal time shocks
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