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1 Introduction

The present paper contains an economic model that examines the equilibrium

investment, disclosure, and share retention decisions of an entrepreneur who

launches an IPO. While models of IPOs have been a long-standing staple of the

finance and accounting literatures (see, e.g., Leland and Pyle [1977], Downes and

Heinkel [1986], Trueman [1986], Hughes [1988]), the present analysis contains the

novel feature that many of the entrepreneur’s pre-IPO optimal actions are driven

in part by a concern over the possible liability the entrepreneur may be subject to

in the event the entreprenuer fails to disclose value relevant information he knows

about his firm at the time of the IPO. (There are other, more traditional forces

that influence the entrepreneur’s decisions as well, including entrepreneurial

moral hazard in his investment choices and the entreprenuer’s assumed higher

rate of discounting cash flows than outside investors.) While examining penalties

for nondisclosure in any market context characterized by information asymmetry

is a natural object of study, examining such penalties is particularly appropriate

∗This is an early draft. Comments welcome!
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in the context of IPOs given the real resource allocation effects surrounding

primary issues.

Our analysis yields a variety of comparative statics results, including results

concerning how the entrepreneur’s pre-IPO investment and share retention deci-

sions are affected by each of: the quality of the private information he receives,

as measured by the precision of his information; the probability he receives

private information; and the severity of the entrepreneur’s penalties for nondis-

closure, as measured by the size of a "damages multiplier" (which determines

what fraction of investor losses arising from investors having overpaid for the

shares they bought as a consequence of the entreprenuer having deliberately

withheld information from them must be reimbursed by the entreprenur).

While several of our findings are intuitive, at least three stand out as un-

expected. First, we show that, for a broad range of damages multipliers, the

entrepreneur’s equilibrium disclosure policy is independent of whether he fo-

cuses on the "short run" and is only concerned about the immediate effects of

his disclosure on the selling price of his shares in the firm or instead, whether he

focuses on the "long run" and also accounts for the potential damage payments

he may be liable for in the event he decides to withhold his information from

investors and that withholding is subsequently detected. Second, we show that

small increases in the damages multiplier always increase the probability the

entrepreneur will withhold information. Third, we show that small (or local)

increases in the damages multiplier always (weakly) increase the fraction of

the firm the entrepreneur sells to outside investors, when the entrepreneur con-

templates how is equilibrium share retention decisions affect the entrepreneur’s

incentives to investment in the firm prior to the IPO. An additional conclusion

we obtain is that, contrary to the central finding of Leland and Pyle [1977],

increases in the equilibrium fraction of shares retained by the entrepreneur need

not imply higher firm value.

In the course of generating these and other results, we obtain what we believe
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to be new findings about the equilibrium probability that a value-maximizing

manager of a firm will disclose an estimate of the firm’s value that the manager

occasionally privately receives: if this estimate is normally distributed and

is an unbiased estimate of the firm’s cash flows, we show that the equilibrium

probability the manager will disclose this estimate is independent of each of: the

mean and variance of his firm’s cash flows, the precision of the estimate; and the

manager’s equilibrium ownership stake in the firm. As part of these findings,

we show that no matter what the ex ante probability p the manager privately

receives an estimate, the ex ante probability he will disclose the estimate in

equilibrium always exceeds 1
2 × p.

The paper proceeds as follows. The next section, Section 2, introduces the

model. Section 3 describes features of the entrepreneur’s preferences. Section 4

examines the entrepreneur’s optimal disclosure policy, and it contains the gen-

eral finding regarding the equilibrium disclosure probability mentioned above.

Section 5 evaluates the entrepreneur’s equilibrium investment decision, taking

his share retention decision as given. Sections 6 and 7 respectively study the

entrepreneur’s optimal share retention decision. Section 8 contains a summary

of some of our main findings, and the appendix contains proofs of all results not

proven in the text or accompanying footnotes.

2 Base model setup

A risk-neutral entrepreneur ("E") initially owns 100% of a firm that consists of

the following decreasing returns to scale production technology. If E privately

selects investment I ≥ 0 today at cost .5I2, then his firm ultimately generates

cash flows z, the realization of the random variable z̃, which is normally distrib-

uted with meanm(I) and variance 1
τ , henceforth written as z̃˜N(m(I), 1

τ ). Here,

m(I) is some strictly increasing, twice differentiable, weakly concave function

representing the undiscounted expected cash flows E’s firm generates conditional
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on E selecting investment I. For much of the analysis, we set m(I) = w× I, for

some positive contant w representing the marginal productivity of E’s invest-

ment, but many of the results below generalize to arbitrary functions m(·) that

satisfy these monotonicity, concavity, and differentiability conditions.

The cash flows z E’s firm produces are realized some time in the future. E

perceives the present value of cash flows z today to be δ × z for some constant

δ ∈ (0, 1), E’s discount rate. This discount rate reflects E’s impatience. E is

assumed to be more impatient than outside investors in that outside investors

value the firm’s ultimate cash flows z today at δiz for some constant δi where

δ < δi ≤ 1 reflecting the investors’lower discount rate. (This difference between

E’s and outside investors’assumed impatience is natural, and can be motivated

by E’s life cycle or liquidity demands.) To simplify notation, and with no loss

of generality, we set δi = 1 throughout the following.

In this base model, we assume that concurrently with selecting investment

I, E chooses what fraction f ∈ [0, 1] of his firm to sell to outside investors.1

E could set f = 0 and keep all the cash flows z his firm produces for himself,

or alternatively, E could set f at some positive value, and thereby reliquish

property rights over fraction f of the firm’s cash flows in return for receiving an

"up front" payment from outside investors, as described further below. When

E sells fraction f > 0 of his firm to outside investors, we interpret this as

constituting an IPO. The fraction f is public information.

Before E sells any fraction of the firm to outside investors, with probability

p ∈ (0, 1) E privately receives an estimate ṽ of the firm’s cash flows z̃. This

estimate ṽ is taken to be unbiased and given by

ṽ = z̃ + ε̃, where ε̃˜N(0,
1

r
) is independent of z̃. (1)

When E selects investment I, we write g(v|I) and G(v|I) for the density and

cdf of ṽ respectively. Given I, it is apparent that the prior distribution of ṽ is
1 In section 7 below, we evaluate the consequences of dropping the assumption that E selects

f "up front."
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ṽ˜N(m(I), σ2), where σ2 ≡ 1
τ + 1

r = r+τ
rτ . With probability 1− p, E receives no

such estimate.

If E receives information v, E must decide whether to disclose v or not.2

As is now standard in the voluntary disclosure literature (cf. Dye [1985]), we

assume: 1. if E discloses information, it must be truthful; 2. if E receives no

information, he necessarily makes no disclosure, and 3. E cannot truthfully

disclose that he has received no information.

After the IPO is complete, if E disclosed nothing prior to the IPO, then

a fact finder (investor, reporter, auditor, etc.) is presumed to undertake an

investigation and, if the reason E disclosed nothing turns out to be that E

withheld information, the fact finder with probability q ∈ (0, 1) both detects

that E withheld information and what the withheld information was. In the

latter event, E is forced to pay damages to investors who purchased shares in E’s

firm. These damage payments, as we describe in detail below, are taken to be

proportional to the amount investors overpaid for their share of the firm, where

"overpaid" is determined by the difference between what they actually paid and

what they would have paid had E disclosed the information in his possession.

The fact finder fails to discover that E withheld information (with probability

1− q), but the fact finder never wrongly asserts E withheld information.

Finally, the firm’s realized cash flows z occur and are apportioned between

E and outside investors based on the fraction f of shares E sold to the investors.

In summary, the time line of the base model is as follows: E starts out

by selecting investment I and what fraction f , if any, of his firm to sell to in-

vestors, and then waits to receive private information about the firm’s value. If

E receives no such information, he necessarily makes no disclosure; if E receives

information, he decides whether he is better off disclosing the information to

2The model that follows could be augmented by positing that, in addition to selectively
making voluntary disclosures, E’s firm is obligated to make certain prescribed mandatory
disclosures too, corresponding to disclosures in proxy statements, S-1 disclosures, and the
like. We do not formally incorporate such mandatory disclosures in the model.
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investors or withholding that information. Then the IPO takes place. If E

withheld information from outside investors before the IPO, then E is subject

to damage payments in the event the fact finder subsequently detects his with-

holding. Finally, the firm’s realized cash flows occur, and both E and outside

investors consume those cash flows in proportion to their previously determined

ownership stakes in the firm.

3 E’s preferences

To write E’s preferences explicity, we start by distinguishing between E’s ac-

tual investment choice and investors’ conjecture about his investment choice;

the notation I refers to an actual investment choice E makes, I∗ refers to his

optimal (actual) investment choice, and Î refers to investors’conjecture about

E’s investment choice. We let f×P (v|Î) represent the amount outside investors

pay E in the event E sells investors fraction f of the firm to them after disclos-

ing that ṽ = v, when the investors believe E selected investment Î . Since we

assume there are lots of risk neutral, competitive, and homogenously informed

outside investors, f × P (v|Î) can be described alternatively as the expected

cash flows these outside investors expect to receive from buying fraction f of

the firm. Hence, P (v|Î) is investors’assessments of the amount of the expected

cash flows they expect the entire firm to generate. Similarly, we let f × Pnd(Î)

represent the amount investors pay E for fraction f of the firm when E makes

no disclosure.

When E receives, but decides to withhold, v from investors, the difference

f × (Pnd(Î)− P (v|Î)) constitutes the losses investors incur in expectation as a

consequence of E having withheld information v from them: it is the difference

between what they paid E for fraction f of the firm and the expected cash

flows they will actually get from purchasing this fraction of the firm, based on

information in E’s possession. In the event the fact finder discovers E withheld

6



information from investors, we posit E must pay investors some multiple β of

these damages, specifically, f×β×(P (v|Î)−Pnd(Î)), where β ≥ 0 is a "damages

multiplier" determining the fraction of damages E must reimburse investors for.

In the following, we impose a bound how large the damages multiplier can be:

we restrict β so that

q(1 + β) < 1. (2)

There is substantial documentation that β is much smaller than 1 in practice:

investors who purchase a firm’s shares while its managers withheld unfavorable

information from them are far from being "made whole," so the bound on β

implied by (2) will not be binding in practice.3

With these prefatory comments complete, we can now describe E’s prefer-

ences explicitly. We temporarily simplify notation by suppressing reference

to investors’conjectures about the firm’s investment Î and hence write Pnd in

place of Pnd(Î) and P (v) in place of P (v|Î). If E’s actual initial investment is

I, E sells fraction f of his firm to outside investors, the realized value of ṽ turns

out to be v, and E discloses v; then (the present value of) E’s utility is given by:

δ(1− f)× E[z̃|v, I] + f × P (v)− .5I2. (3)

This is the sum of: (1) the present value of the expected cash flows of the firm

(evaluated at E’s discount rate) for the fraction of the firm E retains conditional

on E’s information (v and I), δ(1 − f) × E[z̃|v, I]; 2. the payment E receives

from outside investors for selling fraction f of the firm to them after disclosing

v, f ×P (v), net of: 3. the cost of E’s initial investment, .5I2. In this expression,

note that we do not discount the payment f × P (v) E receives from outside

investors, since we assume this payment (and hence the IPO) occurs suffi ciently

soon after E’s initial investment (and suffi ciently before the firm’s cash flows

realize its value) that no discounting is warranted.

3See, e.g., Ryan and Simmons [2009].
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Similarly, if E selects investment I and ṽ turns out to have the value v, and

either E does not learn v, or E learns, but withholds, v from investors and the

fact finder fails to subsequently detect E’s withholding (so no damage payments

are assessed), then (the present value of) E’s utility is given by:

δ(1− f)× E[z̃|v, I] + f × Pnd − .5I2. (4)

Finally, if E selects investment I, ṽ turns out to have the value v; E learns v and

withholds that information from investors, and this withholding is subsequently

detected by the fact finder (so E is assessed damage payments), then (the present

value of) E’s utility is given by:

δ(1− f)× E[z̃|v, I] + f × P (v)− f × β(Pnd − P (v))− .5I2. (5)

If E elects to withhold v from investors, E will not know at that time whether

the fact finder will subsequently detect E’s withholding. So, at that time

E’s expected discounted utility will be a weighted average of (4) and (5), with

weights 1− q and q respectfully, leading to:

δ(1− f)× E[z̃|v, I] + (1− q)fPnd + q(fP (v)− fβ(Pnd − P (v)))− .5I2. (6)

4 Preliminary analysis of E’s decision to with-
hold or disclose v

When E learns ṽ = v, whether E is better off withholding or disclosing v is

determined by whether (6) is bigger or smaller than (3). Since the both of the

terms δ(1− f)× E[z̃|v, I] and −.5I2 appear in each of (3) and (6), E is better

off withholding v iff the following inequality holds:4

(1− q)× fPnd + qf × [P (v)− β(Pnd − P (v))] > fP (v). (7)

4For the sake of specificity, we assume that if E is indifferent between withholding and
disclosing, E discloses (though, since ṽ is continuously distributed, such cases of indifference are
zero probability events, and hence are irrelevant to any "ex ante" expected utility calculations).
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This last inequality can be rewritten as:

(1− q − qβ)fPnd + (q + qβ)fP (v) > fP (v).

When the bound (2) holds, it is clear that this last inequality is equivalent to:

Pnd > P (v). (8)

This result is surprising. It shows that even though we take E’s objective func-

tion to be "long run," in so far as E accounts for the expected cost of the damage

payments he may be liable for at the time he makes his disclosure decision, E’s

optimal decision to disclose or withhold v is the same as if E’s objective function

were "short run," with E being concerned only with maximizing the price of the

firm circa the time he makes his disclosure decision - without concern for the

possible damage payments he may be subject to if he withholds information.

The result obtains because both "10b-5 like" damage payments and the optimal

short run disclosure decision are based on the difference between the "no disclo-

sure" price of a share and the price of a share had E disclosed his information.

We summarize this finding in the following lemma.

Lemma 1 When (2) holds, E’s optimal "long run" disclosure policy coincides

with E’s optimal "short run" disclosure policy.

To proceed, we next provide an explicit expression for P (v) = P (v|Î), the

value outside investors attach to the whole firm when E discloses v. Note that,

before v is disclosed, N(m(Î), 1
τ ) constitutes investors’prior beliefs about the

distribution of z̃ given Î . Recalling (1), we know that, given z̃ = z, the dis-

tribution of the estimate ṽ may be expressed as ṽ|z˜N(z, 1
r ). So, according to

standard updating formulas for normal distributions (see, e.g., DeGroot [1970]),

investors’posterior assessment of z̃ after seeing v is also normally distributed

with mean E[z̃|v, Î] = τm̂(Î)+rv
τ+r . Hence, given investors’assumed risk-neutrality

and recalling the normalization δi = 1, we conclude:

P (v|Î) = E[z̃|v, Î] =
τm(Î) + rv

τ + r
. (9)
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Combining this with the inequality (8) where Pnd = Pnd(f), we conclude that

E’s optimal "no disclosure" set is given by:

ND(f) = {v|Pnd(f) >
τm(Î) + rv

τ + r
},

or equivalently, there exists a cutoff vc = vc(f)(= Pnd(f)(τ+r)−τm(Î)
r ) so that

the "no disclosure" set is described by:

ND(f) = {v|vc(f) > v}. (10)

5 Characterization of the equilbrium disclosure
policy

We next address the issue of: if E makes no disclosure and investors believe E

selects investment Î and employs the disclosure cutoff vc(f) when he decides to

sell fraction f of the firm to them, what are the expected cash flows, inclusive

of expected damage payments, investors expect to receive? To answer this

question, we note that, given E’s nondisclosure, there are three distinct possible

events of interest: 1. the reason E made no disclosure was that E received no in-

formation; 2. the reason E made no disclosure was that E withheld information,

and subsequently the fact finder fails to detect that E withheld information; 3.

the reason E made no disclosure was that E withheld information, and sub-

sequently the fact finder detects that E withheld information - in which case

investors who bought shares in the firm at the time of the IPO are are entitled

to damage payments.

To analyze these three possibilities, we first simplify notation by once again

holding investors’perceptions Î of E’s investment temporarily fixed, and so we

write the cdf and density of of ṽ as G(v) and g(v) in place of G(v|Î) and g(v|Î)

respectively, and we also write m̂ in place of m(Î).

It follows that investors’ex ante perceptions of the probability E will make

no disclosure is given by 1− p+ pG(vc). This is the probability E receives no
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information plus the probability that E receives information that is below the

cutoff vc. Hence, applying Bayes’Rule, we conclude that the probability of the

event that E received no information, conditonal on E making no disclosure,

i.e., the probability of event (1) as described in the opening paragraph of this

section conditional on E making no disclosure, is given by:

1− p
1− p+ pG(vc)

. (11)

Likewise, the probability of events (2) and (3) above as perceived by investors,

given E makes no disclosure, are respectively:

p(1− q)G(vc)

1− p+ pG(vc)
(12)

and
pqG(vc)

1− p+ pG(vc)
. (13)

Next notice that, conditional on no disclosure and also conditional on event

(1), investors expect to receive cash flows obtained from buying fraction f of

the firm in the amount:

fE[z̃|Î] = f × m̂. (14)

Investors’perceptions of the expected cash flows they will receive conditional

on no disclosure and event (2) are given by:

fE[z̃|ṽ < vc] = f × E[
τm̂+ rṽ

τ + r
|ṽ < vc]. (15)

To calculate investors’perceptions of the expected cash flows they will receive

conditional on no disclosure and event (3), first fix a particular v < vc and note

that if the fact finder subsequently discovers that E withheld this v, then the

cash flows investors expect to receive, net of damage payments, are given by:

fE[z̃|v, Î] + fβ(Pnd − E[z̃|v, Î]) = f ×
[
τm̂+ rv

τ + r
+ β(Pnd − τm̂+ rv

τ + r
)

]
.

So, conditional only on no disclosure and event (3) (but not also conditioning on

a particular v < vc), the cash flows investors expect to receive, net of expected
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damage payments, are given by:

f × E[
τm̂+ rṽ

τ + r
+ β(Pnd − τm̂+ rṽ

τ + r
)|ṽ < vc]. (16)

Thus, the total expected cash flows investors expect to obtain, conditional only

on no disclosure by E, consists of the sum of the products of (11) and (14), (12)

and (15), (13) and (16), i.e., consists of:

f×
(1− p)m̂+ p(1− q)G(vc)E[ τm̂+rṽ

τ+r |ṽ < vc] + pqG(vc)E[ τm̂+rṽ
τ+r + β(Pnd − τm̂+rṽ

τ+r )|ṽ < vc]

1− p+ pG(vc)
,

which may be rewritten as:

f ×
(1− p)m̂+ pG(vc)E[ τm̂+rṽ

τ+r |ṽ < vc] + pqG(vc)βE[Pnd − τm̂+rṽ
τ+r |ṽ < vc]

1− p+ pG(vc)
.

(17)

Competition among investors to buy fraction f of the firm’s shares when E

makes no disclosure will drive the price f × Pnd E receives for those shares to

(17). That is:

f × Pnd = (17). (18)

Moreover, in order for the value v = vc to qualify as the cutoff defining E’s no

disclosure set (10), it must be true that when ṽ = vc, E is indifferent between

disclosure and nondisclosure, implying from (9) that vc and Pnd must be related

through:

f × τm̂+ rvc

τ + r
= f × Pnd. (19)

Putting (18) and (19) together, it follows that in equilibrium, the cutoff vc must

satisfy the equation:

f×τm̂+ rvc

τ + r
= f×

(1− p)m̂+ pG(vc)E[ τm̂+rṽ
τ+r |ṽ < vc] + pqG(vc)βE[ τm̂+rvc

τ+r − τm̂+rṽ
τ+r |ṽ < vc]

1− p+ pG(vc)
.

(20)

Rewrite (20) using the definition of conditional expectations and the obvious

fact that m̂ = τm̂+rm̂
τ+r as:

τm̂+ rvc

τ + r
=

(1− p) τm̂+rm̂
τ+r + p

∫ vc τm̂+rv
τ+r g(v)dv + p rqβτ+r

∫ vc
(vc − v)g(v)dv

1− p+ pG(vc)
,
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or alternatively as:

τm̂+ rvc

τ + r
=

(1− p+ pG(vc)) τm̂τ+r + r
τ+r

(
(1− p)m̂+ p

∫ vc
vg(v)dv + pqβ

∫ vc
(vc − v)g(v)dv

)
1− p+ pG(vc)

.

(21)

The following theorem links the equilibrium cutoff vc that solves (21) to a

"standardized" cutoff xc defined in terms of the density φ(·) and cdf Φ(·) of a

standard normal random variable, call it x̃. In the statement of the theorem,

we let α ≡ 1− qβ.

Theorem 2 If vc = vc(m̂, σ) solves (21), i.e., if vc(m̂, σ) defines the equilbrium

cutoff when investors perceive the mean of the firm’s cash flows (and also the

mean of ṽ) to be m̂ and the variance of ṽ is σ2, then

vc(m̂, σ) = σxc + m̂, (22)

where x = xc is the unique solution to the equation

x(1− p+ αpΦ(x)) + αpφ(x) = 0. (23)

This theorem has several consequences. First, (22) provides two immediate

and general comparative statics: the equilibrium cutoff vc increases in lock step

with investors’perceptions of the mean of the firm’s cash flows, i.e., ∂v
c(m̂,σ)
∂m̂ = 1,

and the equilibrium cutoff vc increases linearly in the standard deviation σ of

ṽ, specifically: ∂vc(m̂,σ)
∂σ = xc. But, perhaps more importantly, the theorem

establishes that the normalized equilbrium disclosure cutoff xc is independent

of each of: E’s equilibrium investment choice I∗(f), the variance 1
τ of the firm’s

cash flows z̃, the precision r of the estimate ṽ, E’s discount rate δ, and the

fraction f of the firm E retains. Therefore, the equilibrium probability Φ(xc)

that E will withhold (and hence also the equilibrium probability 1−Φ(xc) that E

will disclose) the information he receives is also independent of all these factors.5

5Note that there is no contradiction between the assertion that the probability E discloses
information is independent of each of these factors and the observation that the equilibrium
cutoff vc changes with these factors, since the cdf G(v|I) of the random variable ṽ changes in
a way that, combined with the equilibrium change in the cutoff vc, leaves the probability E
will withhold information unchanged.
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This robustness of the equilibrium disclosure probability to all these factors (in

the presence of unbiased and normally distributed estimates of the firm’s cash

flows) is, as far as we are aware, a new result in the literature on voluntary

disclosures.

The following corollary records several additional findings regarding the nor-

malized equilibrium cutoff xc.

Corollary 3 The unqiue xc that solves (23):

(i) is negative: xc < 0;

(ii) is strictly decreasing in p : ∂xc

∂p < 0;

(iii) is strictly increasing in β : ∂xc

∂β > 0;

(iv) is strictly increasing in q : ∂x
c

∂q > 0;

(v) is strictly decreasing in α: ∂xc

∂α < 0;

(vi) implies that the ex ante probability E will make a disclosure is at least

p/2.

Before discussing these comparative statics individually, we make two ob-

servations that apply to all of them. First, since the cdf Φ is monotone in-

creasing, each of these comparative statics is also a comparative static about

the equilibrium probability that E does not make a disclosure in equilibrium.

Thus, for example, since the corollary asserts that xc increases in β, it follows

that the probability that E makes no disclosure in equilibrium also increases

in β.6 Second, each of these comparatives statics is also a comparative static

about how the equilibrium cutoff vc changes in any parameter, in view of the

monotone relationship between xc and vc described in Theorem 2, namely that

vc(m̂, σ) = σxc + m̂. Thus, for example, since the corollary asserts that in equi-

6 In the case of the parameter p, the ex ante probability E receives information, this last
statement in the text is also true, but it requires the following extra observation to confirm:
the ex ante probability that E does not make a disclosure is 1 − p + pG(xc(p)). Thus, the
marginal effect on this probability of a small increase in p is: ∂

∂p
(1 − p + pG(xc(p))) =

−1 + G(xc(p)) + pg(xc(p))
∂xc(p)
∂p

= −(1 − G(xc(p))) + pg(xc(p))
∂xc(p)
∂p

. Since the corollary

asserts that ∂x
c(p)
∂p

< 0, we conclude that ∂
∂p

(1− p+ pG(xc(p))) < 0 too.
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librium xc increases in β, it follows that the equilibrium cutoff vc(m̂, σ) also

increases in β.

Now, as to the individual conclusions of the corollary: part (i) implies that

the equilibrium cutoff xcis below the prior mean of x̃ (and hence the equilibrium

cutoff vc is below the prior mean of ṽ) and part (ii) shows that these cutoffs are

decreasing in the prior probability E receives information. Thus, from these

results, we know that any estimate v E receives above the prior mean will be

disclosed, and the higher the ex ante probability p E receives information, the

higher the probability E will disclose the information E receives conditional on

receiving the information. These two results are generalizations of previously

obtained results concerning equilibrium cutoff disclosure policies obtained by

Dye [1985] and Jung and Kwon [1988], now extended to situations where the

value-maximizing firm (or E) is subject to potential damage payments in the

presence of a normally distributed estimate of the firm’s cash flows.

The result of part (iii) of the corollary that xc increases in β might at first

blush seem so counterintuitive as to be wrong, as it implies that an increase in

the damages multiplier β reduces the probability E will disclose the information

he receives. Since the damages payment βf(Pnd − P (v)) can be viewed as

a penalty for nondisclosure, and the damages multiplier β can be viewed as

a parameter for this penalty, the result runs contrary to the intuition that

an increase in a penalty for nondisclosure should encourage more, not less,

disclosure. But, the result has an easy explanation. Recall from Lemma

1 that, as long as the inequality in (2) is maintained, E’s optimal (long run)

disclosure policy is determined by the (short) run comparison of Pnd and P (v)

in (8). Clearly, the parameter β does not appear explicitly in (8); but β does

appear implicitly in (8) through Pnd. Pnd increases in β because as β increases,

outside investors who purchase shares in the firm when E makes no disclosure

purchase shares of a firm that will give them bigger damages payments in the

event the fact finder catches E withholding information from investors. Since

15



Pnd increases in β, it follows that inequality (2) will hold for more values of v as

β increases, and hence E will withhold the information he receives more often.

This same logic applies to explain part iv of the corollary, i.e., why an increase

in the effi cacy of the fact finder, in the form of an increase in the probability

q that the fact finder detects that E withheld information, also results in an

increase in the probability E withholds information: increasing q has the effect

of increasing the no disclosure price because it increases the probability investors

will receive damages.

Part (v) of the Corollary are generalizations of parts iii and iv, given α′s

definition (recall α = 1− qβ).

Part (vi) yields the robust conclusion that, regardless of the probability p the

firm receives information, the ex ante probability E will disclose the information

exceeds p/2. This follows directly from the observation of part i of the corollary

that xc < 0, along with the symmetry of the density of a standard normal

random variable around z = 0 (which implies that p(1− Φ(xc)) > p/2).

6 E’s equilibrium investment choice for a fixed
share retention level f

Next, we concern ourselves with how E makes his initial investment choice, when

investors believe E has selected investment Î upon deciding to sell fraction f of

his firm to them. We temporarily write m in place of m(I) and and m̂ in place

of m(Î), and we recall that the value f × Pnd(Î) investors attach to buying

fraction f of the firm when E makes no disclosure is also equal to f × τm̂+rvc

τ+r

for the equilibrium cutoff vc = vc(Î(f)) that solves (20).

We assert that E’s "ex ante" objective function is given by:

OBJ ≡ (1− f)δm− .5I2 + f ×Ψ(I, Î), (24)
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where

Ψ(I, Î) ≡ (1− p+ pG(vc|I))
τm̂+ rvc(Î)

τ + r
+ (25)

p

∫ ∞
vc(Î)

τm̂+ rv

τ + r
g(v|I)dv − pqβ

∫ vc(Î)

−∞
(
τm̂+ rvc(Î)

τ + r
− τm̂+ rv

τ + r
)g(v|I)dv.

Here, f × Ψ(I, Î) is the price E anticipates receiving from investors when they

purchase fraction f of the firm from him net of the expected damage payments

he subsequently expects to pay investors. To see this, note that if E receives no

information, or if he receives information v below vc, he makes no disclosure and

so collects the "no disclosure" price f ×Pnd = f × τm̂+rvc

τ+r from investors; since

the ex ante probability of no disclosure is 1− p+ pG(vc|I), the contribution of

f × τm̂+rvc

τ+r to E’s expected utility is:

f(1− p+ pG(vc|I))× τm̂+ rvc(Î)

τ + r
(26)

If E receives information v ≥ vc, E is better off disclosing it rather than staying

silent. Since the conditional expected value of such good news is fE[ τm̂+rṽ
τ+r |ṽ >

vc, I], and since the ex ante probability of getting such good news is p(1 −

G(vc|I)), it follows that this contribution to E’s expected utility is:

p(1−G(vc|I))fE[
τm̂+ rṽ

τ + r
|ṽ > vc, I] = p

∫ ∞
vc

τm̂+ rv

τ + r
g(v|I)dv. (27)

Finally, recall that the expected cost of E’s damage payments, conditional on

having to pay them, is given by fβE[ τm̂+rvc

τ+r − τm̂+rv
τ+r |ṽ < vc, I]. Since the ex

ante probability E will be obliged to make these damage payments is pqG(vc|I),

the contribution of these damage payments to E’s expected utlity is:

fpqG(vc|I)βE[
τm̂+ rvc

τ + r
− τm̂+ rv

τ + r
|ṽ < vc, I] = fpqβ

∫ uc

−∞
(
τm̂+ rvc

τ + r
− τm̂+ rv

τ + r
)g(v|I)dv.

(28)

Summing (26) and (27) and subtracting (28) leads to expression (25).

To characterize E’s optimal investment choice, consider the first-order con-

dition associated with maximizing E’s objective function (24) with respect to I.
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This first-order condition is given by:

0 = (1− f)δm′(I)− I + f × ∂Ψ

∂I
. (29)

Here, f × ∂Ψ
∂I is E’s perception of the sensitivity of the net ("net" of damage

payments) proceeds E expects to receive from selling fraction f of the firm

to a marginal increase in I. Recalling α ≡ 1 − qβ, one can show (see the

accompanying footnote7) that, in equilibrium - when I = Î−this sensitivity is
7To see this, we start by showing that Ψ can be rewritten as:

Ψ(I, Î) = (1− p) τm̂+ rvc(Î)

τ + r
+ (30)

p(1− qβ)

∫ ∞
−∞

max{ τm̂+ rvc(Î)

τ + r
,
τm̂+ rv

τ + r
}g(v|I)dv + pqβ

τm̂+ rm

τ + r
.

To see this, first note that:∫ vc

−∞
(
τm̂+ rvc

τ + r
− τm̂+ rv

τ + r
)g(v|I)dv =

∫ ∞
−∞

max{ τm̂+ rvc

τ + r
− τm̂+ rv

τ + r
, 0}g(v|I)dv

=

∫ ∞
−∞

max{ τm̂+ rvc

τ + r
− τm̂+ rv

τ + r
,
τm̂+ rv

τ + r
− τm̂+ rv

τ + r
}g(v|I)dv

=

∫ ∞
−∞

(
max{ τm̂+ rvc

τ + r
,
τm̂+ rv

τ + r
} − τm̂+ rv

τ + r

)
g(v|I)dv

=

∫ ∞
−∞

max{ τm̂+ rvc

τ + r
,
τm̂+ rv

τ + r
}g(v|I)dv −

∫ ∞
−∞

τm̂+ rv

τ + r
g(v|I)dv

=

∫ ∞
−∞

max{ τm̂+ rvc

τ + r
,
τm̂+ rv

τ + r
}g(v|I)dv − τm̂+ rm

τ + r
. (31)

Also notice that:

τm̂+ rvc

τ + r
G(vc|I) +

∫ ∞
vc

τm̂+ rv

τ + r
g(v|I)dv =

∫ vc

−∞

τm̂+ rvc

τ + r
g(v|I)dv +

∫ ∞
vc

τm̂+ rv

τ + r
g(v|I)dv

=

∫ ∞
−∞

max{ τm̂+ rvc

τ + r
,
τm̂+ rv

τ + r
}g(v|I)dv,

so upon rearrangment, we conclude:∫ ∞
vc

τm̂+ rv

τ + r
g(v|I)dv =

∫ ∞
−∞

max{ τm̂+ rvc

τ + r
,
τm̂+ rv

τ + r
}g(v|I)dv − τm̂+ rvc

τ + r
G(vc|I). (32)

Substituting the expressions (31) and (32) into (25) establishes (30).
Next, by appealing to Lemma 8(vi) in the appendix, we observe that:∫∞
−∞max{vc, v}gI(v|I)dv = m′(I)(1 − G(vc|I)). Since

∫∞
−∞ gI(v|I)dv = 0, it follows

that: ∫ ∞
−∞

max{ τm̂+ rvc

τ + r
,
τm̂+ rv

τ + r
}gI(v|I)dv =

∫ ∞
−∞

(
τm̂

τ + r
+

r

τ + r
max{vc, v}

)
gI(v|I)dv

=

∫ ∞
−∞

τm̂

τ + r
gI(v|I)dv +

r

τ + r

∫ ∞
−∞

max{vc, v}gI(v|I)dv =
r

τ + r

∫ ∞
−∞

max{vc, v}gI(v|I)dv

=
rm′(I)(1−G(vc|I))

τ + r
.
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given by
∂Ψ(I, I)

∂I
= m′(I)×X,

where

X ≡ pr

τ + r
(1− αΦ(xc)). (33)

Hence, the first-order condition (29) can be rewritten as:

0 = (1− f)δm′(I)− I + fm′(I)X.

Hence, when m(I) = w × I, we conclude:

Theorem 4 For given f ∈ [0, 1], E’s equilibrium investment level (when Î(f) =

I∗(f)) is given by:

I∗(f) = δw + fw × (X − δ). (34)

The theorem is best understood in terms of its comparative statics implica-

tions, summarized in the following cororllary.

Corollary 5 (i) I∗(f) is strictly linearly increasing (decreasing) in f iff X > δ

(resp., X < δ);

(ii) for fixed f, I∗(f) is:

(iia) increasing in r;

(iib) decreasing in τ ;

(iic) increasing in β;

(iid) increasing in q; and

(iie) decreasing in α;

(iif) increasing in δ.

Hence, differentiating (30) with respect to I yields:

∂Ψ

∂I
= p(1− qβ)

rm′(I)(1−G(vc|I))
τ + r

+ pqβ
rm′(I)

τ + r
=
prm′(I)

τ + r
((1− qβ)(1−G(vc|I)) + qβ)

=
prm′(I)

τ + r
(1− qβ − (1− qβ)G(vc|I) + qβ) =

prm′(I)

τ + r
(1− (1− qβ)G(vc|I))

=
prm′(I)

τ + r
(1− αΦ(xc))

(this last equality follows from Theorem 2 when I = Î, i.e., when investors’conjecture about
E’s effor choice is correct), as claimed in the text.
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Part i of the corollary is intuitive: whether E’s optimal investment increases or

decreases in f is determined by how large the sensitivity of the present value of

the portion of the firm’s cash flows E retains is to his investment choice, ∂
∂I (1−

f)δwI = (1 − f)δw, relative to how large is the sensitivity of E’s net proceeds

from the fraction of the firm he sells is to his investment choice, ∂Ψ(I,I)
∂I =

fwX. If the former is larger (smaller) than the latter, E’s investment decreases

(increases) with f. The rest of the results in the corollary are equally intuitive:

consider e.g., the result in (iia) that E’s investment optimally increases in the

precision r of the estimate ṽ. The amount investors will pay for the fraction of

the firm they buy will change more with the realized (and disclosed) value v of

the estimate ṽ the greater is the precision r of this estimate. Realizing this, E

naturally works harder as r increases. We do not take up the space to explain

the other comparative statics, but they are all as intuitive as these two results.

7 E’s equilibrium share retention decision

In this section, we study E’s choice of what fraction f of the firm to sell in the

IPO. The tension in selecting f is clear: since E discounts future cash flows

more than outside investors do, other things equal E has an incentive to sell

most or all of the firm to arbitrage this difference in discount rates, but the

larger the fraction of the firm E sells, he has less of an incentive to invest in

the firm "up front." Optimally choosing f just entails figuring out the optimal

trade off between these two forces.

Taking investors’conjectures about his investment choice Î(f) as given and

then choosing I∗(f) optimally, E’s objective function can be written as:

OBJ = (1− f)δm(I∗(f))− .5(I∗(f))2 + f ×Ψ(I∗(f), Î(f)). (35)

This is the expected discounted value to E of the fraction of cash flows E retains

evaluated at E’s optimal investment level choice, (1− f)δm(I∗(f)), net of the

cost to E of that investment, .5(I∗(f))2, plus the expected proceeds E receives
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for selling fraction f of the firm to outside investors net of the expected damage

payments he may owe them, conditional on investors believing E has adopted

investment level Î(f), namely f ×Ψ(I∗(f), Î(f)). Invoking the envelope theo-

rem,8 and evaluating the derivative at the equilibrium investment level where

I∗(f) = Î(f), we observe that the derivative of OBJ in (35) with respect to f

is given by:

∂

∂f
OBJ = −δm(I∗(f)) + Ψ + f × ∂Ψ

∂Î
|I=Î=I∗(f) ×

∂Î(f)

∂f
. (36)

For purposes of evaluating E’s optimal choice of f , it is desirable to compute

this last derivative, ∂
∂fOBJ , evaluated at the equilibrium investment choice I =

I∗(f) = Î(f), explicitly. To that end we first notice that (see the accompanying

footnote for details9) when investors are correct about E’s investment choice:

f ×Ψ(I, I) = f ×m(I). (37)

That is, the net proceeds E receives for selling fraction f of the firm to investors,

f ×Ψ(I, I), equals fraction f of the firm’s total expected cash flows m(I). The

damage payments constitute, in expectation, a net wash: what E receives "up

front" as payments from investors is what in expectation E, or rather, E’s firm,

expects to pay back to investors later. Notwithstanding this observation, it

does not follow that the damage payments are irrelevant, as they affect what

equilibrium investment choice E adopts, as we saw above in connection with the

corollary to Theorem 4 (where it was shown that E’s equilibrium investment

choice I∗(f) increases in the damages multiplier β).

8Which, when considering small changes in f , allows us to ignore the effect of changes in
f on I∗(f), but it does not allow us to disregard the effect of changes in f on Î(f), since
E controls (and can adjust) I∗(f) as he f changes, but he does not control how investors’
conjectures Î(f) change with f.

9This follows from (21), the defining condition for the equilibrium value of vc, as (21)
implies, when I = I∗(f) = Î(f) (and hence m̂ = m = m(I∗(f))), using the shorthand G(vc)
for G(vc|I) and g(vc) for g(vc|I)) :

τm+ rvc

τ + r
=

(1− p+ pG(vc)) τm
τ+r

+ r
τ+r

(
(1− p)m+ p

∫ vc vg(v)dv + pqβ
∫ vc (vc − v)g(v)dv

)
1− p+ pG(vc)

and so, upon multiplying both sides of this last equation by the denominator of its RHS and
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Next, recalling the definition of X in (33) above, we can also show that (see

the accompanying footnote10) when Î = I = I∗(f) :

∂

∂Î
Ψ(I, Î)|I=Î=I∗(f) = (1−X)w. (38)

Since from (34), we know whenm(I) = wI, that I∗(f) is linear in f and, related,

then adding p
∫∞
vc

τm+rv
τ+r

g(v)dv to both sides, we get:

τm+ rvc

τ + r
× (1− p+ pG(vc)) + p

∫ ∞
vc

τm+ rv

τ + r
g(v)dv

= (1− p+ pG(vc))
τm

τ + r
+

r

τ + r

(
(1− p)m+ p

∫ vc

vg(v)dv + pqβ

∫ vc

(vc − v)g(v)dv

)

+p

∫ ∞
vc

τm+ rv

τ + r
g(v)dv

= (1− p)m+ pG(vc)
τm

τ + r
+

r

τ + r

(
p

∫ vc

vg(v)dv + pqβ

∫ vc

(vc − v)g(v)dv

)

+p

∫ ∞
vc

τm+ rv

τ + r
g(v)dv

= (1− p)m+ p

∫ vc τm+ rv

τ + r
g(v)dv +

r

τ + r
pqβ

∫ vc

(vc − v)g(v)dv + p

∫ ∞
vc

τm+ rv

τ + r
g(v)dv

= (1− p)m+ p

∫ ∞
−∞

τm+ rv

τ + r
g(v)dv +

r

τ + r
pqβ

∫ vc

(vc − v)g(v)dv

= (1− p)m+ pm+
r

τ + r
pqβ

∫ vc

(vc − v)g(v)dv

= m+ pqβ

∫ vc

(
τm+ rvc

τ + r
− τm+ rv

τ + r
v)g(v)dv.

Hence, when I = I∗(f) = Î(f), (25) can be expressed as:

Ψ = (1− p+ pG(vc))
τm+ rvc(Î)

τ + r
+ p

∫ ∞
vc(Î)

τm+ rv

τ + r
g(v|I)dv

−pqβ
∫ vc(Î)

−∞
(
τm+ rvc(Î)

τ + r
− τm+ rv

τ + r
)g(v|I)dv

= m+ pqβ

∫ vc

(
τm+ rvc

τ + r
− τm+ rv

τ + r
v)g(v)dv − pqβ

∫ vc(Î)

−∞
(
τm+ rvc

τ + r
− τm+ rv

τ + r
)g(v|I)dv

m,

as claimed in the text.
10Rewrite Ψ(I, Î) as

Ψ(I, Î) = (1− p) τm̂+ rvc(Î)

τ + r
+ p(1− qβ)

(∫ vc(Î)

−∞

τm̂+ rvc(Î)

τ + r
g(v|I)dv +

∫ ∞
vc(Î)

τm̂+ rv

τ + r
g(v|I)dv

)

+pqβ
τm̂+ rm

τ + r
.
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that I∗(f) can be written as:

I∗(f) = δw + f × ∂I∗(f)

∂f
(39)

where
∂I∗(f)

∂f
= w(X − δ). (40)

But, since an equilbrium requirement is that I∗(f) ≡ Î(f) is an identity in f ,

it follows that:
∂I∗(f)

∂f
=
∂Î(f)

∂f
. (41)

Combining this expression for Ψ(I, Î) with m(Î) = wâ, we conclude that

∂

∂Î
Ψ(I, Î) =

∂

∂vc
Ψ(I, Î)

∂vc

∂Î
+

∂

∂m̂
Ψ(I, Î)

∂m̂

∂Î

= {(1− p) r

τ + r
+ p(1− qβ)G(vc(Î)|I) r

τ + r
}∂v

c

∂Î

+{(1− p) τ

τ + r
+ p(1− qβ)

τ

τ + r
+ pqβ

τ

τ + r
}∂m̂
∂Î

= {1− p+ p(1− qβ)G(vc(Î)|I)} r

τ + r

∂vc

∂Î
+ {1− p+ p(1− qβ) + pqβ} τ

τ + r

∂m̂

∂Î

= {1− p+ p(1− qβ)G(vc(Î)|I)} r

τ + r

∂vc

∂Î
+

τ

τ + r

∂m̂

∂Î

= {1− p+ p(1− qβ)G(vc(Î)|I)} rw

τ + r
+

τw

τ + r
.

In this last line, we utilized Theorem 2 to conclude ∂vc

∂Î
= m′(Î) = w. Hence, when Î = I :

∂

∂Î
Ψ(I, I) = ({1− p+ p(1− qβ)G(vc(I)|I)} r

τ + r
+

τ

τ + r
)w

= (
r

τ + r
− pr

τ + r
(1− (1− qβ)G(vc(I)|I)) +

τ

τ + r
)w

= (1− pr

τ + r
(1− αG(vc(I)|I)))w

= (1− pr

τ + r
(1− αΦ(xc)))w

= (1−X)w.

In the second to last line, we employed Theorem 2 to conclude that the equilibrium probability
of no disclosure is given by Φ(xc).
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Putting (38) to (41) together, we can express the derivative (36) as:

∂

∂f
OBJ = −δm(I∗(f)) + Ψ + f × ∂Ψ

∂Î
|I=Î=I∗(f) ×

∂Î(f)

∂f
(42)

= (1− δ)wI∗(f) + f × ∂Ψ

∂Î
|I=Î=I∗(f) ×

∂Î(f)

∂f

= (1− δ)w(δw + f × ∂I∗(f)

∂f
) + f × (1−X)w × ∂I∗(f)

∂f

= (1− δ)δw2 + (1− δ + 1−X)wf
∂I∗(f)

∂f

= (1− δ)δw2 + (2− δ −X)w2f(X − δ). (43)

Working with (43), we obtain the following theorem. In the statement of the

theorem, we make reference to the function

ψ(r) ≡ (1−X(r))2 for all r > 0,

where X = X(r), which we presently view as a function of r, is as defined in

(33) above.

Theorem 6 (A) If (1 − p(1 − αΦ(xc)))2 < 1 − δ, then there exists a unique

r > 0, call it rδ, such that ψ(rδ) = 1− δ.

(Ai) For all r < rδ, the optimal f is given by

f∗ =
(1− δ)δ

(1−X)2 − (1− δ)2
; (44)

(Aii) for all r > rδ, the optimal f is f = 1.

(B) If (1−p(1−αΦ(xc)))2 ≥ 1−δ, then for all r > 0, the optimal f is given

by (44).

Using the theorem, we can make specific predictions about how E’s opti-

mal share retention 1 − f∗ varies with various parameters of the model, as

summarized in the following corollary.

Corollary 7 E’s equilbrium ownership stake 1− f∗ always (at least weakly):

(i) declines as the precision r of the estimate ṽ increases;
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(ii) declines as the probability p E receives information increases;

(iii) declines as the damages multiplier β increases.

The first two comparative statics in the corollary are intuitive. Holding his

investment choice fixed, E always has an incentive to sell 100% of his firm to

outside investors, since they value the firm more than he does (because of their

lower discount rates). But, since E’s investment choice is endogenous, and

depends in part on what fraction of the firm he retains, his ex ante investment

choice will be ineffi ciently low unless he retains a substantial ownership stake

in the firm. However, as the quality of the estimate ṽ E receives increases, as

measured by the precision of the estimate, or as the probability E receives the

estimate increases, the accounting estimate ṽ can be relied on more to ensure

that E has good incentives to work hard to invest in the firm even if he sells

some fraction of his original ownership stake. Hence, E can profitably sell a

larger stake in the firm as either r or p increase. Perhaps somewhat surprisingly,

according to part (iii) of the corollary E sells a larger stake in the firm to investors

as the damages multiplier increases. This is somewhat surprising, because E

incurs more costs in selling a larger fraction of the firm to investors as the

damages multiplier increases.

8 Extensions

8.1 E’s continued involvement in the firm after the IPO

In the base model, there were no actions that E could take after the IPO was

completed that influenced the cash flows E’s firm eventually generates. In prac-

tice, this may not be true, because E may make key operational and/or invest-

ment decisions after the IPO that affect the firm’s cash flows. But, the base

model can be easily extended to incorporate such effects. For example, suppose

that after the IPO is completed, E makes a second personally costly investment

decision I2 that augments the cash flows the firm ultimately produces. Specif-
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ically, suppose that the firm’s total cash flows z are increased in expectation by

w2I2 when E selects investment I2 after the IPO at cost to E of .5I2
2 . If at the

IPO, E sold fraction f of the firm to outside investors, then E’s choice of I2 will

be determined by maximizing (1 − f)w2I2 − .5I2
2 , leading E to choose optimal

second investment I∗2 = (1− f)w2, and thereby augmenting the firm’s expected

cash flows by (1− f)w2I
∗
2 = (1− f)2w2

2.

Expanding the base model to include this second, post IPO, investment by

E, it is clear that: (a) E’s optimal "long run" disclosure choice, as in (7), will

continue to be the same as the optimal "short run" disclosure choice, as in (8),

provided the bound (2) on β continues to hold; (b) Theorem 2 will continue

to characterize the equilibrium cutoff for disclosure; (c) the equilibrium "no

disclosure" price of the firm will now be the sum of τm̂+rvc

τ+r , where the cutoff is

as just described in (b) augmented by the extra cash flows (1−f)2w2
2 generated

by the second investment (as calculated in the preceding paragraph); (d) the

comparative statics summarized in Corollary 3 will hold without change; and (e)

the optimal initial investment for a fixed share retention decision will continue

to be as described in Theorem 4, and the comparative statics concerning that

investment will be as described in Corollary 5. What will change is E’s preferred

choice regarding the fraction of the firm E sells in the IPO. Naturally, this

fraction optimally will be adjusted downwards to reflect the favorable impact

of increasing E’s share retention on the size of his optimal second investment

I∗2 . This change will require adjustments to the statements of Theorem 6 and

Corollary 7 concerning E’s optimal share retention. As these adjustments are

straightforward, we do not report them here.

8.2 E’s equilibrium share retention with a delayed choice
of share retention

Another possible extension of some interest is a variant of the base model studied

above in which E is assumed to delay making a choice regarding what fraction
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f of the firm to sell to outside investors until the time of the IPO, i.e., after he

either learns the estimate v about the cash flows of the firm or learns that he

will not obtain such an estimate. We offer a brief discussion of this extension

in the paragraphs that follow.

The first observation we make regarding this "delayed f" extension is that if

E receives, and decides to disclose, information v, then E’s subsequent equilib-

rium choice of the fraction f of the firm to sell to outside investors is uniquely

given by f = 1, that is, E will sell his entire firm to investors. The technical

details of the argument are described in the accompanying footnote,11 but the

economics are simple: at the time of the IPO in the base model, the distrib-

ution of the firm’s cash flows is fixed, so it is sensible at that point when v is

public to allocate the firm’s cash flows to the parties that value those cash flows

the most. Since E has a smaller discount factor than the outsider investors

do, it is effi cient to transfer all of the firm’s cash flows to the outside investors,

by having them pay a lump sum (their present value of these cash flows) to E.

Hence, if I denotes his initial investment level, E’s expected utility conditional

11To see this, note first that if E discloses v, then investors’ perceptions of the expected

value of the firm, P (v|Î) =
τm(Î)+rv

τ+r
, cannot, in any equilibrium, vary with the fraction f

of the firm E proposes to sell them. Equivalently, if E discloses v, investors’ conjecture of
E’s investment choice Î cannot vary with f in any equilibrium. This follows directly from an
argument by contradiction: if investors’equilibrium conjecture Î = Î(f) did vary with f , then
when E actually makes his investment choice at the start of the model, E should anticipate,
and take account of, that variation. Since E makes his investment choice "up front," then
E ultimately must decide on a single investment choice. Hence, by the time E selects f at
the time of the IPO, his actual investment choice will be sunk, and hence will not vary with
f . So, his actual investment choice will not be consistent with investors’conjecture that his
investment choice varies with f. Hence, a conjecture that I varies with f is not consistent
with any equilibrium.
Hence, in equilibrium investors’ conjecture Î must be a constant independent of f. The

same must also be true of m(Î) : investors’ conjecture about the firm’s expected cash flows
must also be independent of f.
Furthermore, in any equilibrium, investors’conjecture about Î will coincide with E’s actual

choice, and hence m(Î) will coincide with m(I). Hence, if E sells fraction f of the firm to
investors when he received, and disclosed v, he will get expected utility at that point of
(1 − f)δ τm+rv

τ+r
+ f τm+rv

τ+r
− .5I2. Since δ < 1, and - by the reasoning just given, since m

does not vary with f - E’s expected utility is clearly strictly increasing in f for all f ≤ 1.
This proves the optimality for E of selling all of his firm to investors whenever he discloses

v.
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on learning ṽ = v will be

P (v|I)− .5I2 =
τm(I) + rv

τ + r
− .5I2. (45)

Next, we discuss whether, when E receives information v that he decides not

to disclose, E in equilibrium will choose to sell outside investors a fraction f

of the firm that differs from the fraction, call it fno inf o, E would have sold in-

vestors in the event he received no information. Were E to make such a choice,

then both outside investors and the fact finder would know that E received in-

formation that he did not disclose. While, theoretically, one could entertain the

possibility that E signals, through his choice of f, that he obtained information

he did not disclose at the same time the fact finder might not be able to detect

E’s withholding, it seems implausble to us that a fact finder in this situation

would not continue to search for evidence of E’s withholding until he found

it.12 If E anticipated such dilligence on the part of the fact finder, E would

not choose to signal that he received information that he did not subsequently

disclose. Hence, it is reasonable to conclude that for any v E received but did

not disclose, E chooses the same fraction fno inf o of the firm to sell to investors

that he would have sold to them had he not received any information. Relying

on this intuition, we write fnd to refer to the equilibrium fraction of the firm E

sells to investors when he makes no disclosure, independent of whether or not

E withholds information.

The determination of this fnd is not unique when E delays his choice of

f to the IPO. While we do not analyze here the full spectrum of equilibria

that can emerge in the "delayed" case, we can use the analysis of the preceding

sections to characterize one of these "delayed f" equilibria. We assert that the

following is an equilibrium: when E makes no disclosure, fnd = 1 accompanied

by off equilibrium beliefs that stipulate that in the event E makes no disclosure

12This is unlike the situation the fact finder faced in the previous sections of the paper,
where the fact finder did not know, at the time E made no disclosure, whether E withheld
information he received or whether E did not receive any information.
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and chooses an f other than fnd, then investors conclude that E observed and

withheld a "very low" value of v, along with: Pnd(fnd = 1) = vc(m(I∗), σ)

where vc(m(I∗), σ) is defined by (22) above and I∗ as defined in (34) above

with f = 1, i.e., with I∗(f = 1) = wX.

We sketch here why, with these specifications, the preceding is an equilibrium

in the "delayed f" case. If E receives information v, then given the above

specification of off equilibrium beliefs, E will choose f = 1 regardless of whether

he discloses or withholds v, and E will make a decision to disclose or withhold

v based on a comparision of his expected utility conditional on receiving v from

disclosing v, as described in (45) above (with I∗ replacing I), to his expected

utility (also conditional on receiving v) from withholding v, given by:

(1− q)fndPnd + q(fndP (v|I∗)− β(Pnd − P (v|I∗)) + (1− fnd)δE[z̃|I∗]− .5I∗2

= (1− q)Pnd + q(P (v|I∗)− β(Pnd − P (v|I∗))− .5I∗2.

This comparsion is easily shown to amount to comparing Pnd to P (v|I∗), just

as the desirability of disclosing or withholding v in the case studied in the

preceding sections started by comparing LHS(7) to RHS(7) and finished by

comparing LHS(8) to RHS(8). Because E’s share retention is the same with

and without disclosure, and because E’s disclosure decision is the same in this

case as that previously studied, it follows that E’s no "disclosure price" and

hence E’s equilibrium "no disclosure" set is the same as that previously studied

as well.

What is not the same in this case as that studied in previous sections is

that no extra conditions are needed now (in the "delayed f” case) to ensure the

optimality of fnd = 1. We showed in Theorem 6 above that when E chooses

f "up front," it is an equilbrium for E to set f = 1 only when the conditions

of Theorem 6 A(ii) held. In contrast, note that the preceding argument for

fnd = 1 in the "delayed f” case holds without imposing such extra conditions

as those described in Theorem 6 A(ii). This is to be expected. If E selects
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his share retention decision "delayed," then E perforce disregards the effects

of his choice of f on his initial investment choice, as that choice is now sunk.

Hence, the set of circumstances under which E is inclined to sell his entire firm

at the time of the IPO will be considerably broader than when he chose f earlier

and took into account the incentive effects of his share retention decision on his

initial investment choice.

Finally we note that were we to combine the present "delayed f” extension

with the previous extension considered above where E selects a second post-IPO

investment level after the IPO is completed, then the optimal "delayed f” share

retention typically will not shrink to 1 − f = 0, in view of how damaging such

a choice would be for E’s optimal second investment decision. Thus, while E’s

optimal share retention level in the "delayed f” situation is still likely to be

lower than it would be were E to choose the size of the IPO f "up front" in the

presence of a second investment choice by E, it would typically not degenerate

to E eliminating entirely his ownership stake in the firm.

9 Summary

We have studied a moral hazard-based model of an entrepreneur who develops

a firm which engages in an IPO. Increases in the entrepreneur’s equilibrium in-

vestment ex ante, before the IPO occurs, increase the post IPO firm’s expected

cash flows. The entrepreneur’s partial, and sometimes complete, unwinding

of his ownership stake in the firm through the IPO is effi cient because the

entrepreneur is posited to discount the firm’s future cash flows more than do

outside investors. We show how the entrepreneur’s equilibrium investment de-

cision, share retention decision, and voluntary disclosure decision are affected

by each of: the entrepreneur’s discount rate, the entrepreneur’s cost of mak-

ing the initial investment, the precision of the entrepreneur’s estimate about

the firm’s future cash flows, the probability the entrepreneur receives such an
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estimate, and the entrepreneur’s legal liability for withholding value relevant

information from investors. Among our results, we show: 1. the robustness of

the equilibrium probability the entreprenuer discloses the private information

he receives to a variety of parameters affecting his information environment; 2.

that the entrepreneur’s disclosure decision is often the same whether he em-

phasizes "short run" or "long run" considerations in the presence of 10b-5 like

damage payments; and 3. increases in the penalty imposed on the entrepre-

neur for withholding value-relevant information from investors often leads him

to disclose less, not more, information to investors, and leads him to sell more,

not less, of his firm to outside investors in the IPO.

When the entrepreneur chooses what fraction of the firm to retain just before

the IPO, we show that he tends to choose to retain a smaller percentage of the

firm (as compared to when he selects what fraction of the firm to retain "up

front"). This outcome occurs because while retaining a higher fraction of the

firm often has favorable effects on the entrepreneur’s incentives to invest in his

firm initially, such investments at the time the IPO takes place are sunk, and so

are irrelevant to his optimal share retention decisions at that time. Maintaining

significant post IPO share retention levels for the entrepreneur can be shown to

be optimal even in those instances where the entrepreneur’s initial investment

become sunk, provided the entrepreneur’s continued involvement in the firm

suffi ciently affects the realized values of the firm’s post-IPO cash flows.

10 Appendix: Proofs (not proven in the text or
footnotes)

Lemma 8 If ũ is normally distributed with mean m(I) and variance σ2, density

h(u|I) and cdf H(u|I), then:

(i)
∫ uc

(uc − u)h(u|I)du =
∫∞
−∞max{uc, u}h(u|I)du−m(I) = H(uc|I)(uc −

m(I)) + σ2h(uc|I);
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(ii)
∫∞
−∞max{uc, u}h(u|I)du = H(uc|I)(uc −m(I)) + σ2h(uc) +m(I);

(iii)
∫ uc

uh(u|I)du = −σ2h(uc|I) +m(I)H(uc|I);

(iv)
∫
uc
uh(u|I)du = m(I)(1−H(uc|I)) + σ2 × h(uc);

(v) HI(u
c|I) = −m′(I)h(uc|I);

(vi)
∫∞
−∞max{uc, u}hI(u|I)du = m′(I)(1−H(uc|I)).

Proof of Lemma 8 By definition: h(u|I) = 1
σ
√

2π
e−

(u−m(I))2

2σ2 andH(uc|I) =∫ uc
−∞ h(u|I)du. Observe

dh(u|I)

du
=

d

du

1

σ
√

2π
e−

(u−m(I))2

2σ2 = −u−m(I)

σ2
× h(u|I).

Thus, for any uc :∫ uc

(u−m(I))h(u|I)du = −σ2 ×
∫ uc

(−u−m(I)

σ2
)h(u|I)du = −σ2h(uc|I),

so∫ uc

uh(u|I)du =

∫ uc

(u−m(I))h(u|I)du+m(I)H(uc|I) = −σ2h(uc|I)+m(I)H(uc|I).

This proves (iii).

Related:
dh(u|I)

da
=
u−m(I)

σ2
×m′(I)× h(u|I).

it follows that,

HI(u
c|I) =

∫ uc

−∞
hI(u|I)du =

∫ uc

−∞

u−m(I)

σ2
×m′(I)× h(u|I)du

= −m′(I)

∫ uc

−∞
(−u−m(I)

σ2
)h(u|I)du = −m′(I)h(uc|I).

This proves (v).

It is a standard observation concerning truncated normal random variables

that:

E[ũ|ũ > uc] = m(I) + σ ×
φ(u

c−m(I)
σ )

1− Φ(u
c−m(I)
σ )

.
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Hence, since φ(u
c−m(I)
σ ) = σh(uc|I) :∫

uc
uh(u|I)du = Pr(ũ > uc)× E[ũ|ũ > uc] = m(I)(1−H(uc|I)) + σ × φ(

uc −m(I)

σ
)

= m(I)(1−H(uc|I)) + σ2 × h(uc|I).

This proves (iv). This also shows that∫ ∞
−∞

max{uc, u}h(u|I)du = Pr(ũ ≤ uc)uc + Pr(ũ > uc)× E[ũ|ũ > uc]

= H(uc|I)uc +m(I)(1−H(uc|I)) + σ2h(uc)

= H(uc|I)(uc −m(I)) +m(I) + σ2h(uc).

This proves (ii). This further implies:

∫ uc

(uc − u)h(u|I)du =

∫ ∞
−∞

max{uc − u, u− u}h(u|I)du

=

∫ ∞
−∞

(max{uc, u} − u)h(u|I)du

=

∫ ∞
−∞

max{uc, u}h(u|I)du−
∫ ∞
−∞

uh(u|I)du

=

∫ ∞
−∞

max{uc, u}h(u|I)du−m(I)

= H(uc|I)(uc −m(I)) + σ2h(uc|I).
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This proves (i). From this, it also follows that:∫ ∞
−∞

max{uc, u}hI(u|I)du =
∂

∂I

∫ ∞
−∞

max{uc, u}h(u|I)du

=
∂

∂I

(
H(uc|I)(uc −m(I)) +m(I) + σφ(

uc −m(I)

σ
)

)
= HI(u

c|I)(uc −m(I))−m′(I)H(uc|I) +m′(I) + σ
∂

∂I
φ(
uc −m(I)

σ
)

= HI(u
c|I)(uc −m(I))−m′(I)H(uc|I)

+m′(I) +m′(I)
uc −m(I)

σ2
σφ(

uc −m(I)

σ
)

= HI(u
c|I)(uc −m(I))−m′(I)H(uc|I) +m′(I)

+m′(I)(uc −m(I))h(uc|I)

= −m′(I)h(uc|I)(uc −m(I))−m′(I)H(uc|I) +m′(I)

+m′(I)(uc −m(I))h(uc|I)

= m′(I)(1−H(uc|I)).

(The second to last line follows from part (v).) This proves (vi).�

Proof of Theorem 2 Multiply both sides of equation (21) by the denom-

inator of RHS(21) to get:

τm̂+ rvc

τ + r
× (1− p+ pG(vc))

= (1− p+ pG(vc))
τm̂

τ + r
+

r

τ + r

(
(1− p)m̂+ p

∫ vc

vg(v)dv + pqβ

∫ vc

(vc − v)g(v)dv

)
,

or equivalently,

vc × (1− p+ pG(vc)) = (1− p)m̂+ p

∫ vc

vg(v)dv + pqβ

∫ vc

(vc − v)g(v)dv,

or equivalently

(vc − m̂)(1− p) + pvcG(vc) = p

∫ vc

vg(v)dv + pqβ

∫ vc

(vc − v)g(v)dv. (46)

From Lemma 8 parts (i) and (iii) we know:∫ vc

vg(v)dv = −σ2g(vc) + m̂G(vc)
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and ∫ vc

(vc − v)g(v)dv = G(vc)(vc − m̂) + σ2g(vc),

so (46) can be written as:

(vc−m̂)(1−p)+pvcG(vc) = −pσ2g(vc)+pm̂G(vc)+pqβG(vc)(vc−m̂)+pqβσ2g(vc),

i.e., as:

(vc − m̂)(1− p+ p(1− qβ)G(vc)) + p(1− qβ)σ2g(vc) = 0.

Dividing this last equation by σ and recalling the definition of α, we note that

this last equation can be rewritten:

(
vc − m̂
σ

)(1− p+ αpG(vc)) + αpσg(vc) = 0. (47)

Now define xc by

xc ≡ vc − m̂
σ

, (48)

and substitute this xc into (47), after observing thatG(vc) = Φ(xc) and σg(vc) =

φ(xc), to conclude that (47) can be rewritten as:

xc(1− p+ αpΦ(xc)) + αpφ(xc) = 0.

�

Proof of Corollary 3 part (i) First note that LHS(23) is positive for all

x ≥ 0, so if (23) has a solution, that solution must be negative. Also notice that

LHS(23) is strictly increasing in x fo all x, since φ′(x) = −xφ(x) and

∂LHS(23)

∂x
= 1−p+αpΦ(x)+xαpφ(x)−αpφ(x)x = 1−p+αpΦ(x) > 0. (49)

Also notice that LHS(23) goes to −∞ (and hence, in particular, turns negative)

as x→ −∞, since x(1−p)→ −∞ as x→ −∞.Obviously, LHS(23) is continuous

in x. Thus, (23) has a unique, negative solution for all α, p ∈ [0, 1]. This proves

(i). It also proves (vi), since xc < 0 implies Φ(xc) < .5.
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part (ii) Differentiate (23) totally with respect to p, using φ′(x) = −xφ(x)

to get:
∂LHS(23)

∂x

∂xc

∂p
+
∂LHS(23)

∂p
= 0, (50)

or equivalently, using (49):

[1− p+ αpΦ(xc)]
∂xc

∂p
= xc(1− αΦ(xc))− αφ(xc).

Since 1 > α, we have 1 > Φ(xc) ≥ αΦ(xc). That, combined with xc < 0, yields:

xc(1− αΦ(xc))− αφ(xc) < 0. From this, ∂x
c

∂p < 0 follows.

part (v) Differentiate (23) totally with respect to α, in a fashion analogous

to (50) above, to get:

[1− p+ αpΦ(xc)]
∂xc

∂α
+ xcpΦ(xc) + pφ(xc) = 0,

or equivalently:
∂xc

∂α
= −px

cΦ(xc) + φ(xc)

1− p+ αpΦ(xc)
. (51)

Now, we claim that f(x) defined by:

f(x) ≡ xΦ(x) + φ(x) (52)

is positive for all x ∈ R. To see this, first note that notice that φ′ = −xφ,

so that f ′(x) = xφ + Φ − xφ = Φ(x) > 0, so f(·) is strictly increasing in x

for all x. Thus, if limx→−∞ f(x) = 0, we will be done, as this will show that

f(x) > 0 for all x. But notice that xΦ(x) can be written as xΦ(x) = Φ(x)
1
x

, and

limx→−∞Φ(x) = 0, and limx→−∞
1
x = 0, so L’Hospitals rule applies to establish

that

lim
x→−∞

xΦ(x) = lim
x→−∞

Φ(x)
1
x

= lim
x→−∞

φ(x)

− 1
x2

= − 1√
2π

lim
x→−∞

x2e−x
2/2 = 0. (53)

Since limx→−∞ φ(x) = 0 too, it follows from (53) that limx→−∞ xΦ +φ(x) = 0,

too. That is, limx→−∞ f(x) = 0. This completes the proof of the claim that

f(x) > 0 for all finite x. Notice using the notation (52) that we can write ∂xc

∂α in
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(51) as ∂x
c

∂α = −p f(xc)
1−p+αpΦ(xc) . Since f(x) is now known to be positive for all x,

it follows that ∂xc

∂α < 0, as claimed in part (v). Parts (iii) and (iv) now follow

immediately, since α = 1− qβ, and hence sgn∂xc∂β = sgn∂x
c

∂α
∂α
∂β = −sgn∂xc∂α , and

similarly sgn∂x
c

∂q = sgn∂x
c

∂α
∂α
∂q = −sgn∂xc∂α .�

Proof of Theorem 6

We begin by proving the following lemma.

Lemma 9 Case 1 If δ ≤ X ≡ pr
τ+r (1− αΦ(xc)), then the optimal f is f = 1

Case 2a If δ > X and 1− δ < (1−X)2, then the optimal f is

f∗ =
(1− δ)δ

(1−X)2 − (1− δ)2
. (54)

Case 2b δ > X and 1− δ ≥ (1−X)2, then the optimal f is f = 1.

Proof of Lemma 9

First, we note that since

(2− δ −X)(−δ +X) = −δ(2− δ) +X(2− δ) +Xδ −X2

= −δ(2− δ) + 2X −X2

= 1− δ)2 − (1−X)2,

(43) can be rewritten as:

∂

∂f
OBJ = (1− δ)δw2 + w2f{(1− δ)2 − (1−X)2}.

Next, notice that since both δ and X are positive and less than 1, Case 1 of the

lemma occurs iff (1− δ)2 ≥ (1−X)2. Thus, in view of (??), ∂
∂fOBJ is positive

for all f ≥ 0. Hence, the optimal f is f∗ = 1.

Notice in Case 2 of the lemma, (1 − δ)2 < (1 − X)2. Thus, in Case 2 the

ratio in (54) is positive. In this case, this ratio is less than 1 iff

(1− δ)δ < (1−X)2 − (1− δ)2 iff

(1− δ)2 + δ − δ2 < (1−X)2

1− δ < (1−X)2. (55)
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When inequality (55) holds - Case 2(a) - ∂
∂fOBJ is positive for f < f∗, where

f∗ is as given in (54), and ∂
∂fOBJ is negative for f > f∗. Hence, in Case 2(a),

the f∗ as defined in (54) is the global maximum of OBJ defined in (35). When

inequality (55) is reversed - Case 2(b) - ∂
∂fOBJ is positive for all f < f∗ where

f∗ is as defined in (54). In particular, since in Case 2(b) the f∗ defined in (54)

exceeds 1, it follows that for all f < 1 in Case 2b, ∂
∂fOBJ is positive. Hence,

in Case 2(b), the optimal f is f = 1. This proves the lemma.�

Now, to prove Theorem 6, recall the function ψ(r) for r > 0 defined by

ψ(r) ≡ (1− pr
τ+r (1− αΦ(x)))2.

We prove Case B (in the statement of Theorem 6) first. We begin by

observing that the function ψ(r) is strictly continuously decreasing in r for all

r > 0, ψ(0) = 1, and limr→∞ ψ(r) = (1− p(1− αΦ(x))).2

In Case B, ψ(r) > 1 − δ for all r > 0. In this case, p(1 − αΦ(x)) ≤ δ

must hold, since if p(1 − αΦ(x)) > δ, then 1 − p(1 − αΦ(x)) < 1 − δ, and so

(1 − p(1 − αΦ(x)))2 < 1 − δ, contrary to this case. Since p(1 − αΦ(x)) ≤ δ

obviously implies X = pr
τ+r (1 − αΦ(x)) < δ holds for any r > 0, we have both

X < δ and (1−X)2 = φ(r) > 1− δ for all r > 0 in this case. Thus, in Case A,

we conclude that the conditions of Case 2(b) of the previous lemma are satisfied

for all r > 0. By that lemma, we conclude that the optimal f is given by f∗ as

defined in (54) for all r > 0 in Case B.

In Case A (in the statement of Theorem 6), first note that by the properties

of ψ(·) identified above, it is clear that there is a unique rδ > 0 as identified

in the statement of the theorem. notice that since 1 − δ = ψ(rδ) = (1 −
prδ

τ+rδ
(1−αΦ(xc)))2 < 1− prδ

τ+rδ
(1−αΦ(xc)), it follows that prδ

τ+rδ
(1−αΦ(xc)) < δ.

Hence, if r < rδ, then both X = pr
τ+r (1 − αΦ(xc)) < δ and 1 − δ < ψ(r) =

(1 − pr
τ+r (1 − αΦ(xc)))2 = (1 − X)2. That is, if r < rδ, the conditions of

Case 2A of the previous lemma are satisfied. Thus, f∗ as defined in (55)

is optimal. Finally, consider Case A with r > rδ. For all such r, we have

(1−X)2 = ψ(r) < 1− δ. Now, in this case, either δ ≤ X or δ > X. If δ ≤ X,
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then the conditions of Case 1 are satisfied, so we conclude that the optimal f is

f = 1. Alternatively, if δ > X then the conditions of Case 2a of the previous

lemma are satisfied, and once again we conclude that the optimal f is f = 1.

This completes the proof of Theorem 6.�

Proof of Corollary 7 The essential step is to show that as β increases,

f∗ as defined in (44) strictly increases. Note that f∗ can be written as f∗ =

− (1−δ)δw2
w2((1−δ)2−ψ) , where ψ was defined just before the statement of the theorem.

We intend to prove that αΦ(x(α)) always increases in α for the equilibrium cutoff

x(α). This will show that αΦ(xc(α)) is decreasing in β (because ∂
∂βαΦ(xc(α)) =

∂
∂ααΦ(xc(α))∂α∂β = −q ∂

∂ααΦ(xc(α))). Since X decreases in αΦ(xc(α)), it will

follow that X increases in β. Since ψ decreases in X, this will in turn show

that ψ decreases in β. Since f∗ decreases in ψ, this will in turn show that f∗

increases in β, as was to be shown.

We begin by computing the derivative

∂

∂α
αΦ(xc(α)) = Φ(xc) + αφ(xc)

∂xc(α)

∂α

= Φ(xc) + αφ(xc)×
(
−px

cΦ(xc) + φ(xc)

1− p+ αpΦ(xc)

)
= Φ(xc) + αφ(xc)×

(
p

(xcΦ(xc) + φ(xc))xc

αpφ(xc)

)
= Φ(xc) + (xcΦ(xc) + φ(xc))xc

= Φ(xc)× (1 + (xc)2) + φ(xc)xc.

(The second line comes from the computation (51) in the Appendix; the third

line comes from the equilibrium condition (23) that xc satisfies, namely xc(1−

p + αpΦ(xc)) + αpφ(xc) = 0 which - since we know xc < 0 - can be writ-

ten alternatively as 1 − p + αpΦ(xc) = −αpφ(xc)
xc , and so −px

cΦ(xc)+φ(xc)
1−p+αpΦ(xc) =

p (xcΦ(xc)+φ(xc))xc

αpφ(xc) ). Now define Ξ(x) ≡ Φ(x) × (1 + (x)2) + φ(x)x. We claim

Ξ(x) is positive for all x ∈ R. To see that, note that, since ∂φ(x)
∂x = −ξφ(x) :

∂Ξ(x)

∂x
= φ(x)× (1 + (x)2) + 2Φ(x)x+ φ(x)− φ(x)(x)2

= 2(φ(x) + Φ(x)x).
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We have shown in the Appendix, at line (52) that φ(x) + Φ(x)x is positive

for all x. Thus, Ξ(x) is increasing in x. So, Ξ(x) is positive for all x if

limx→−∞ Ξ(x) = 0. Obviously, limx→−∞ φ(x)x = 0 and limx→−∞Φ(x) =

0. So, it suffi ces to show limx→−∞ Φ(x)(x)2 = 0. Write Φ(x)(x)2 = Φ(x)
1
x2

and apply L’Hospital’s rule to conclude limx→−∞ Φ(x)(x)2 = limx→−∞
Φ(x)
1
x2

=

limx→−∞
φ(x)

− 2
x3

= − 1
2 limx→−∞(x)3φ(x) = 0. This completes the demonstration

that limx→−∞ Ξ(x) = 0 and hence that Ξ(x) > 0 for all x and hence that

αΦ(xc(α)) is increasing in α for all potential equilibrium cutoffs xc.�

Proof of Corollary 7

(i) Notice that as r increases, f∗ as defined in (44) always strictly increases.

This follows from the following sequence of deductions:

r ↑ =⇒ (ψ = (1− pr

τ + r
(1− αΦ(xc)))2) ↓=⇒

(
w2((1− δ)2 − (1− pr

τ + r
(1− αΦ(xc)))2)

)
↑

=⇒
(

(1− δ)δw2

w2((1− δ)2 − (1− pr
τ+r (1− αΦ(xc)))2)

)
↓=⇒

(
− (1− δ)δw2

w2((1− δ)2 − (1− pr
τ+r (1− αΦ(xc)))2)

)
↑ .

Also notice that in case A of the theorem as r increases from being below rδ to

being above rδ the entrepreneur’s optimal retention stake goes from a positive

amount to zero.

(ii) The essential step of this demonstration is to show that (44) is strictly

increasing in p. To see this, first recall from the corollary to Theorem 2 that

xc(p) declines in p, so X increases in p, and hence ψ as defined prior to the

statement of Theorem 6 decreases in p. Then, similar to the steps taken in the

proof of part (i) above, it is easy to show that (44) is strictly increasing in r.

It is easy to check (using logic similar to that above) that the inequality

defining case A of the theorem is more likely (and so the inequality defining

case B of the theorem is less likely to occur) as β increases. Since when case

B holds, f∗ is always characterized by (44) whereas in case A, the optimal f is

sometimes equal to one (and when the optimal f is not 1, it is also given by

(44)), so this is yet another reason why, as β increases, the optimal f always
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weakly increases.
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